TPTP Problem File: SEV594^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV594^1 : TPTP v9.2.1. Released v9.2.0.
% Domain : Set Theory
% Problem : No fixed point for function that returns different element, size 1
% Version : Especial.
% English : Given a function that, if available, returns an element different
% from the argument, show that this function has no fixed point for
% sets above a certain size (that size of course being 1). For sets
% of size 1 the conjecture cannot be proved, but the problem is
% still well-typed in the weak sense as it is non-empty. In the
% strong case, it is not even well-typed as it is not possible to
% exhibit an element anymore.
% Refs : [RRB23] Rothgang et al. (2023), Theorem Proving in Dependently
% : [Rot25] Rothgang (2025), Email to Geoff Sutcliffe
% : [RK+25] Ranalter et al. (2025), The Dependently Typed Higher-O
% Source : [Rot25]
% Names : ChoiceNoFixedPoint/dchoice_no_fp_fin1.p [Rot25]
% Status : Theorem
% Rating : ? v9.2.0
% Syntax : Number of formulae : 13 ( 4 unt; 7 typ; 1 def)
% Number of atoms : 9 ( 8 equ; 0 cnn)
% Maximal formula atoms : 2 ( 1 avg)
% Number of connectives : 38 ( 3 ~; 1 |; 0 &; 33 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 3 avg)
% Number of types : 1 ( 1 usr)
% Number of type decls : 7 ( 0 !>P; 2 !>D)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 6 usr; 2 con; 0-2 aty)
% Number of variables : 14 ( 1 ^; 9 !; 1 ?; 14 :)
% ( 2 !>; 0 ?*; 0 @-; 1 @+)
% SPC : DH0_THM_EQU_NAR
% Comments :
%------------------------------------------------------------------------------
thf(nat_type,type,
nat: $tType ).
thf(zero_type,type,
zero: nat ).
thf(suc_type,type,
suc: nat > nat ).
thf(fin_type,type,
fin: nat > $tType ).
thf(f1_type,type,
f1:
!>[A: nat] : ( fin @ ( suc @ A ) ) ).
thf(fs_type,type,
fs:
!>[A: nat] : ( ( fin @ A ) > ( fin @ ( suc @ A ) ) ) ).
thf(f1notfs,axiom,
! [N: nat,X: fin @ N] :
( ( f1 @ N )
!= ( fs @ N @ X ) ) ).
thf(fs_inj,axiom,
! [N: nat,X: fin @ N,Y: fin @ N] :
( ( ( fs @ N @ X )
= ( fs @ N @ Y ) )
=> ( X = Y ) ) ).
thf(finZ_inv,axiom,
! [X: fin @ zero] : $false ).
thf(finS_inv,axiom,
! [N: nat,X: fin @ ( suc @ N )] :
( ( X
= ( f1 @ N ) )
| ? [Y: fin @ N] :
( X
= ( fs @ N @ Y ) ) ) ).
thf(nofp_type,type,
nofp: ( fin @ ( suc @ zero ) ) > ( fin @ ( suc @ zero ) ) ).
thf(nofp_def,definition,
( nofp
= ( ^ [X: fin @ ( suc @ zero )] :
@+[Y: fin @ ( suc @ zero )] : ( X != Y ) ) ) ).
thf(dchoice_nofp_fin1,conjecture,
! [X: fin @ ( suc @ zero )] :
( ( nofp @ X )
!= X ) ).
%------------------------------------------------------------------------------