TPTP Problem File: SEV515+1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV515+1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Set Theory
% Problem : The conclusion of Russell's paradox
% Version : Especial.
% English :
% Refs : [Pel16] Pelletier (2016), Email to Geoff Sutcliffe
% : [PSH17] Pelletier et al. (2017), Automated Reasoning for the D
% Source : [Pel16]
% Names : 15 [PSH17]
% : n01.p [Pel16]
% Status : Theorem
% Rating : 0.07 v9.0.0, 0.00 v7.0.0
% Syntax : Number of formulae : 5 ( 0 unt; 0 def)
% Number of atoms : 36 ( 0 equ)
% Maximal formula atoms : 24 ( 7 avg)
% Number of connectives : 35 ( 4 ~; 14 |; 14 &)
% ( 3 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 7 avg)
% Maximal term depth : 1 ( 1 avg)
% Number of predicates : 5 ( 5 usr; 0 prp; 2-2 aty)
% Number of functors : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 15 ( 10 !; 5 ?)
% SPC : FOF_THM_RFO_NEQ
% Comments : Translated from RM3 using the truth evaluation approach [PSH17].
%------------------------------------------------------------------------------
fof(nc1,conjecture,
( ! [A] :
? [B] :
( ( g_true_only(B,A)
& ( g_both(B,B)
| g_true_only(B,B) ) )
| ( g_both(B,A)
& ( g_false_only(B,B)
| g_true_only(B,B) ) )
| ( g_false_only(B,A)
& ( g_false_only(B,B)
| g_both(B,B) ) ) )
| ( ? [A] :
( ? [B] :
( g_both(B,A)
& g_both(B,B) )
& ~ ? [B] :
( ( g_true_only(B,A)
& ( g_both(B,B)
| g_true_only(B,B) ) )
| ( g_both(B,A)
& ( g_false_only(B,B)
| g_true_only(B,B) ) )
| ( g_false_only(B,A)
& ( g_false_only(B,B)
| g_both(B,B) ) ) ) )
& ~ ? [A] :
! [B] :
( ( g_true_only(B,A)
& g_false_only(B,B) )
| ( g_false_only(B,A)
& g_true_only(B,B) ) ) ) ) ).
fof(true_only_g,axiom,
! [X_2,X_1] :
( g_true_only(X_2,X_1)
<=> ( g_true(X_2,X_1)
& ~ g_false(X_2,X_1) ) ) ).
fof(both_g,axiom,
! [X_2,X_1] :
( g_both(X_2,X_1)
<=> ( g_true(X_2,X_1)
& g_false(X_2,X_1) ) ) ).
fof(false_only_g,axiom,
! [X_2,X_1] :
( g_false_only(X_2,X_1)
<=> ( g_false(X_2,X_1)
& ~ g_true(X_2,X_1) ) ) ).
fof(exhaustion_g,axiom,
! [X_2,X_1] :
( g_true_only(X_2,X_1)
| g_both(X_2,X_1)
| g_false_only(X_2,X_1) ) ).
%------------------------------------------------------------------------------