TPTP Problem File: SEV504^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV504^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Analysis
% Problem : NSUM_SUBSET_SIMPLE
% Version : Especial.
% English :
% Refs : [Kal16] Kalisyk (2016), Email to Geoff Sutcliffe
% Source : [Kal16]
% Names : NSUM_SUBSET_SIMPLE_.p [Kal16]
% Status : Theorem
% Rating : 0.00 v7.1.0
% Syntax : Number of formulae : 14 ( 2 unt; 9 typ; 0 def)
% Number of atoms : 21 ( 3 equ; 0 cnn)
% Maximal formula atoms : 6 ( 4 avg)
% Number of connectives : 72 ( 1 ~; 0 |; 5 &; 61 @)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 9 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 33 ( 33 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 1 con; 0-4 aty)
% Number of variables : 25 ( 0 ^; 20 !; 0 ?; 25 :)
% ( 5 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : Exported from core HOL Light.
%------------------------------------------------------------------------------
thf('thf_type_type/nums/num',type,
'type/nums/num': $tType ).
thf('thf_const_const/sets/SUBSET',type,
'const/sets/SUBSET':
!>[A: $tType] : ( ( A > $o ) > ( A > $o ) > $o ) ).
thf('thf_const_const/sets/IN',type,
'const/sets/IN':
!>[A: $tType] : ( A > ( A > $o ) > $o ) ).
thf('thf_const_const/sets/FINITE',type,
'const/sets/FINITE':
!>[A: $tType] : ( ( A > $o ) > $o ) ).
thf('thf_const_const/sets/DIFF',type,
'const/sets/DIFF':
!>[A: $tType] : ( ( A > $o ) > ( A > $o ) > A > $o ) ).
thf('thf_const_const/nums/NUMERAL',type,
'const/nums/NUMERAL': 'type/nums/num' > 'type/nums/num' ).
thf('thf_const_const/nums/_0',type,
'const/nums/_0': 'type/nums/num' ).
thf('thf_const_const/iterate/nsum',type,
'const/iterate/nsum':
!>[A: $tType] : ( ( A > $o ) > ( A > 'type/nums/num' ) > 'type/nums/num' ) ).
thf('thf_const_const/arith/<=',type,
'const/arith/<=': 'type/nums/num' > 'type/nums/num' > $o ).
thf('thm/iterate/NSUM_SUBSET_',axiom,
! [A: $tType,A0: A > $o,A1: A > $o,A2: A > 'type/nums/num'] :
( ( ( 'const/sets/FINITE' @ A @ A0 )
& ( 'const/sets/FINITE' @ A @ A1 )
& ! [A3: A] :
( ( 'const/sets/IN' @ A @ A3 @ ( 'const/sets/DIFF' @ A @ A0 @ A1 ) )
=> ( ( A2 @ A3 )
= ( 'const/nums/NUMERAL' @ 'const/nums/_0' ) ) ) )
=> ( 'const/arith/<=' @ ( 'const/iterate/nsum' @ A @ A0 @ A2 ) @ ( 'const/iterate/nsum' @ A @ A1 @ A2 ) ) ) ).
thf('thm/sets/FINITE_SUBSET_',axiom,
! [A: $tType,A0: A > $o,A1: A > $o] :
( ( ( 'const/sets/FINITE' @ A @ A1 )
& ( 'const/sets/SUBSET' @ A @ A0 @ A1 ) )
=> ( 'const/sets/FINITE' @ A @ A0 ) ) ).
thf('thm/sets/SUBSET_',axiom,
! [A: $tType,A0: A > $o,A1: A > $o] :
( ( 'const/sets/SUBSET' @ A @ A0 @ A1 )
= ( ! [A2: A] :
( ( 'const/sets/IN' @ A @ A2 @ A0 )
=> ( 'const/sets/IN' @ A @ A2 @ A1 ) ) ) ) ).
thf('thm/sets/IN_DIFF_',axiom,
! [A: $tType,A0: A > $o,A1: A > $o,A2: A] :
( ( 'const/sets/IN' @ A @ A2 @ ( 'const/sets/DIFF' @ A @ A0 @ A1 ) )
= ( ( 'const/sets/IN' @ A @ A2 @ A0 )
& ~ ( 'const/sets/IN' @ A @ A2 @ A1 ) ) ) ).
thf('thm/iterate/NSUM_SUBSET_SIMPLE_',conjecture,
! [A: $tType,A0: A > $o,A1: A > $o,A2: A > 'type/nums/num'] :
( ( ( 'const/sets/FINITE' @ A @ A1 )
& ( 'const/sets/SUBSET' @ A @ A0 @ A1 ) )
=> ( 'const/arith/<=' @ ( 'const/iterate/nsum' @ A @ A0 @ A2 ) @ ( 'const/iterate/nsum' @ A @ A1 @ A2 ) ) ) ).
%------------------------------------------------------------------------------