TPTP Problem File: SEV488^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV488^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Analysis
% Problem : PAIRWISE_CHAIN_UNIONS
% Version : Especial.
% English :
% Refs : [Kal16] Kalisyk (2016), Email to Geoff Sutcliffe
% Source : [Kal16]
% Names : PAIRWISE_CHAIN_UNIONS_.p [Kal16]
% Status : Theorem
% Rating : 0.33 v9.0.0, 0.67 v8.1.0, 0.75 v7.5.0, 0.00 v7.2.0, 0.25 v7.1.0
% Syntax : Number of formulae : 11 ( 5 unt; 5 typ; 0 def)
% Number of atoms : 25 ( 6 equ; 0 cnn)
% Maximal formula atoms : 8 ( 4 avg)
% Number of connectives : 72 ( 1 ~; 1 |; 5 &; 60 @)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 6 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 37 ( 37 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 5 usr; 0 con; 2-3 aty)
% Number of variables : 29 ( 0 ^; 23 !; 1 ?; 29 :)
% ( 5 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : Exported from core HOL Light.
%------------------------------------------------------------------------------
thf('thf_const_const/trivia/I',type,
'const/trivia/I':
!>[A: $tType] : ( A > A ) ).
thf('thf_const_const/sets/UNIONS',type,
'const/sets/UNIONS':
!>[A: $tType] : ( ( ( A > $o ) > $o ) > A > $o ) ).
thf('thf_const_const/sets/SUBSET',type,
'const/sets/SUBSET':
!>[A: $tType] : ( ( A > $o ) > ( A > $o ) > $o ) ).
thf('thf_const_const/sets/pairwise',type,
'const/sets/pairwise':
!>[A: $tType] : ( ( A > A > $o ) > ( A > $o ) > $o ) ).
thf('thf_const_const/sets/IN',type,
'const/sets/IN':
!>[A: $tType] : ( A > ( A > $o ) > $o ) ).
thf('thm/trivia/I_THM_',axiom,
! [A: $tType,A0: A] :
( ( 'const/trivia/I' @ A @ A0 )
= A0 ) ).
thf('thm/sets/IN_',axiom,
! [A: $tType,P: A > $o,A0: A] :
( ( 'const/sets/IN' @ A @ A0 @ P )
= ( P @ A0 ) ) ).
thf('thm/sets/IN_UNIONS_',axiom,
! [A: $tType,A0: ( A > $o ) > $o,A1: A] :
( ( 'const/sets/IN' @ A @ A1 @ ( 'const/sets/UNIONS' @ A @ A0 ) )
= ( ? [A2: A > $o] :
( ( 'const/sets/IN' @ ( A > $o ) @ A2 @ A0 )
& ( 'const/sets/IN' @ A @ A1 @ A2 ) ) ) ) ).
thf('thm/sets/SUBSET_',axiom,
! [A: $tType,A0: A > $o,A1: A > $o] :
( ( 'const/sets/SUBSET' @ A @ A0 @ A1 )
= ( ! [A2: A] :
( ( 'const/sets/IN' @ A @ A2 @ A0 )
=> ( 'const/sets/IN' @ A @ A2 @ A1 ) ) ) ) ).
thf('thm/sets/pairwise_',axiom,
! [A: $tType,A0: A > $o,A1: A > A > $o] :
( ( 'const/sets/pairwise' @ A @ A1 @ A0 )
= ( ! [A2: A,A3: A] :
( ( ( 'const/sets/IN' @ A @ A2 @ A0 )
& ( 'const/sets/IN' @ A @ A3 @ A0 )
& ( A2 != A3 ) )
=> ( A1 @ A2 @ A3 ) ) ) ) ).
thf('thm/sets/PAIRWISE_CHAIN_UNIONS_',conjecture,
! [A: $tType,R: A > A > $o,A0: ( A > $o ) > $o] :
( ( ! [A1: A > $o] :
( ( 'const/sets/IN' @ ( A > $o ) @ A1 @ A0 )
=> ( 'const/sets/pairwise' @ A @ R @ A1 ) )
& ! [A1: A > $o,A2: A > $o] :
( ( ( 'const/sets/IN' @ ( A > $o ) @ A1 @ A0 )
& ( 'const/sets/IN' @ ( A > $o ) @ A2 @ A0 ) )
=> ( ( 'const/sets/SUBSET' @ A @ A1 @ A2 )
| ( 'const/sets/SUBSET' @ A @ A2 @ A1 ) ) ) )
=> ( 'const/sets/pairwise' @ A @ R @ ( 'const/sets/UNIONS' @ A @ A0 ) ) ) ).
%------------------------------------------------------------------------------