TPTP Problem File: SEV480^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV480^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Analysis
% Problem : CARD_UNION_LE
% Version : Especial.
% English :
% Refs : [Kal16] Kalisyk (2016), Email to Geoff Sutcliffe
% Source : [Kal16]
% Names : CARD_UNION_LE_.p [Kal16]
% Status : Theorem
% Rating : 1.00 v7.1.0
% Syntax : Number of formulae : 25 ( 6 unt; 11 typ; 0 def)
% Number of atoms : 51 ( 11 equ; 0 cnn)
% Maximal formula atoms : 4 ( 3 avg)
% Number of connectives : 142 ( 2 ~; 1 |; 7 &; 126 @)
% ( 0 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 7 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 50 ( 50 >; 0 *; 0 +; 0 <<)
% Number of symbols : 11 ( 10 usr; 0 con; 2-4 aty)
% Number of variables : 52 ( 0 ^; 44 !; 0 ?; 52 :)
% ( 8 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : Exported from core HOL Light.
%------------------------------------------------------------------------------
thf('thf_type_type/nums/num',type,
'type/nums/num': $tType ).
thf('thf_const_const/sets/UNION',type,
'const/sets/UNION':
!>[A: $tType] : ( ( A > $o ) > ( A > $o ) > A > $o ) ).
thf('thf_const_const/sets/SUBSET',type,
'const/sets/SUBSET':
!>[A: $tType] : ( ( A > $o ) > ( A > $o ) > $o ) ).
thf('thf_const_const/sets/INTER',type,
'const/sets/INTER':
!>[A: $tType] : ( ( A > $o ) > ( A > $o ) > A > $o ) ).
thf('thf_const_const/sets/IN',type,
'const/sets/IN':
!>[A: $tType] : ( A > ( A > $o ) > $o ) ).
thf('thf_const_const/sets/FINITE',type,
'const/sets/FINITE':
!>[A: $tType] : ( ( A > $o ) > $o ) ).
thf('thf_const_const/sets/EMPTY',type,
'const/sets/EMPTY':
!>[A: $tType] : ( A > $o ) ).
thf('thf_const_const/sets/DIFF',type,
'const/sets/DIFF':
!>[A: $tType] : ( ( A > $o ) > ( A > $o ) > A > $o ) ).
thf('thf_const_const/sets/CARD',type,
'const/sets/CARD':
!>[A: $tType] : ( ( A > $o ) > 'type/nums/num' ) ).
thf('thf_const_const/arith/+',type,
'const/arith/+': 'type/nums/num' > 'type/nums/num' > 'type/nums/num' ).
thf('thf_const_const/arith/<=',type,
'const/arith/<=': 'type/nums/num' > 'type/nums/num' > $o ).
thf('thm/arith/LE_TRANS_',axiom,
! [A: 'type/nums/num',A0: 'type/nums/num',A1: 'type/nums/num'] :
( ( ( 'const/arith/<=' @ A @ A0 )
& ( 'const/arith/<=' @ A0 @ A1 ) )
=> ( 'const/arith/<=' @ A @ A1 ) ) ).
thf('thm/arith/EQ_IMP_LE_',axiom,
! [A: 'type/nums/num',A0: 'type/nums/num'] :
( ( A = A0 )
=> ( 'const/arith/<=' @ A @ A0 ) ) ).
thf('thm/sets/CARD_UNION_',axiom,
! [A: $tType,A0: A > $o,A1: A > $o] :
( ( ( 'const/sets/FINITE' @ A @ A0 )
& ( 'const/sets/FINITE' @ A @ A1 )
& ( ( 'const/sets/INTER' @ A @ A0 @ A1 )
= ( 'const/sets/EMPTY' @ A ) ) )
=> ( ( 'const/sets/CARD' @ A @ ( 'const/sets/UNION' @ A @ A0 @ A1 ) )
= ( 'const/arith/+' @ ( 'const/sets/CARD' @ A @ A0 ) @ ( 'const/sets/CARD' @ A @ A1 ) ) ) ) ).
thf('thm/sets/NOT_IN_EMPTY_',axiom,
! [A: $tType,A0: A] :
~ ( 'const/sets/IN' @ A @ A0 @ ( 'const/sets/EMPTY' @ A ) ) ).
thf('thm/sets/IN_',axiom,
! [A: $tType,P: A > $o,A0: A] :
( ( 'const/sets/IN' @ A @ A0 @ P )
= ( P @ A0 ) ) ).
thf('thm/sets/IN_DIFF_',axiom,
! [A: $tType,A0: A > $o,A1: A > $o,A2: A] :
( ( 'const/sets/IN' @ A @ A2 @ ( 'const/sets/DIFF' @ A @ A0 @ A1 ) )
= ( ( 'const/sets/IN' @ A @ A2 @ A0 )
& ~ ( 'const/sets/IN' @ A @ A2 @ A1 ) ) ) ).
thf('thm/sets/IN_INTER_',axiom,
! [A: $tType,A0: A > $o,A1: A > $o,A2: A] :
( ( 'const/sets/IN' @ A @ A2 @ ( 'const/sets/INTER' @ A @ A0 @ A1 ) )
= ( ( 'const/sets/IN' @ A @ A2 @ A0 )
& ( 'const/sets/IN' @ A @ A2 @ A1 ) ) ) ).
thf('thm/sets/EXTENSION_',axiom,
! [A: $tType,A0: A > $o,A1: A > $o] :
( ( A0 = A1 )
= ( ! [A2: A] :
( ( 'const/sets/IN' @ A @ A2 @ A0 )
= ( 'const/sets/IN' @ A @ A2 @ A1 ) ) ) ) ).
thf('thm/sets/FINITE_DIFF_',axiom,
! [A: $tType,A0: A > $o,A1: A > $o] :
( ( 'const/sets/FINITE' @ A @ A0 )
=> ( 'const/sets/FINITE' @ A @ ( 'const/sets/DIFF' @ A @ A0 @ A1 ) ) ) ).
thf('thm/sets/IN_UNION_',axiom,
! [A: $tType,A0: A > $o,A1: A > $o,A2: A] :
( ( 'const/sets/IN' @ A @ A2 @ ( 'const/sets/UNION' @ A @ A0 @ A1 ) )
= ( ( 'const/sets/IN' @ A @ A2 @ A0 )
| ( 'const/sets/IN' @ A @ A2 @ A1 ) ) ) ).
thf('thm/sets/CARD_SUBSET_',axiom,
! [A: $tType,A0: A > $o,A1: A > $o] :
( ( ( 'const/sets/SUBSET' @ A @ A0 @ A1 )
& ( 'const/sets/FINITE' @ A @ A1 ) )
=> ( 'const/arith/<=' @ ( 'const/sets/CARD' @ A @ A0 ) @ ( 'const/sets/CARD' @ A @ A1 ) ) ) ).
thf('thm/sets/SUBSET_DIFF_',axiom,
! [A: $tType,A0: A > $o,A1: A > $o] : ( 'const/sets/SUBSET' @ A @ ( 'const/sets/DIFF' @ A @ A0 @ A1 ) @ A0 ) ).
thf('thm/arith/LE_ADD_LCANCEL_',axiom,
! [A: 'type/nums/num',A0: 'type/nums/num',A1: 'type/nums/num'] :
( ( 'const/arith/<=' @ ( 'const/arith/+' @ A @ A0 ) @ ( 'const/arith/+' @ A @ A1 ) )
= ( 'const/arith/<=' @ A0 @ A1 ) ) ).
thf('thm/sets/CARD_UNION_LE_',conjecture,
! [A: $tType,A0: A > $o,A1: A > $o] :
( ( ( 'const/sets/FINITE' @ A @ A0 )
& ( 'const/sets/FINITE' @ A @ A1 ) )
=> ( 'const/arith/<=' @ ( 'const/sets/CARD' @ A @ ( 'const/sets/UNION' @ A @ A0 @ A1 ) ) @ ( 'const/arith/+' @ ( 'const/sets/CARD' @ A @ A0 ) @ ( 'const/sets/CARD' @ A @ A1 ) ) ) ) ).
%------------------------------------------------------------------------------