TPTP Problem File: SEV478^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV478^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Analysis
% Problem : CARD_CLAUSES_
% Version : Especial.
% English :
% Refs : [Kal16] Kalisyk (2016), Email to Geoff Sutcliffe
% Source : [Kal16]
% Names : CARD_CLAUSES_1.p [Kal16]
% Status : Theorem
% Rating : 0.00 v7.2.0, 0.25 v7.1.0
% Syntax : Number of formulae : 14 ( 1 unt; 11 typ; 0 def)
% Number of atoms : 13 ( 6 equ; 0 cnn)
% Maximal formula atoms : 5 ( 4 avg)
% Number of connectives : 77 ( 1 ~; 0 |; 1 &; 71 @)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 7 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 28 ( 28 >; 0 *; 0 +; 0 <<)
% Number of symbols : 11 ( 10 usr; 1 con; 0-5 aty)
% Number of variables : 24 ( 2 ^; 14 !; 0 ?; 24 :)
% ( 8 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : Exported from core HOL Light.
%------------------------------------------------------------------------------
thf('thf_type_type/nums/num',type,
'type/nums/num': $tType ).
thf('thf_const_const/sets/ITSET',type,
'const/sets/ITSET':
!>[A: $tType,A0: $tType] : ( ( A > A0 > A0 ) > ( A > $o ) > A0 > A0 ) ).
thf('thf_const_const/sets/INSERT',type,
'const/sets/INSERT':
!>[A: $tType] : ( A > ( A > $o ) > A > $o ) ).
thf('thf_const_const/sets/IN',type,
'const/sets/IN':
!>[A: $tType] : ( A > ( A > $o ) > $o ) ).
thf('thf_const_const/sets/FINITE',type,
'const/sets/FINITE':
!>[A: $tType] : ( ( A > $o ) > $o ) ).
thf('thf_const_const/sets/EMPTY',type,
'const/sets/EMPTY':
!>[A: $tType] : ( A > $o ) ).
thf('thf_const_const/sets/CARD',type,
'const/sets/CARD':
!>[A: $tType] : ( ( A > $o ) > 'type/nums/num' ) ).
thf('thf_const_const/nums/SUC',type,
'const/nums/SUC': 'type/nums/num' > 'type/nums/num' ).
thf('thf_const_const/nums/NUMERAL',type,
'const/nums/NUMERAL': 'type/nums/num' > 'type/nums/num' ).
thf('thf_const_const/nums/_0',type,
'const/nums/_0': 'type/nums/num' ).
thf('thf_const_const/class/COND',type,
'const/class/COND':
!>[A: $tType] : ( $o > A > A > A ) ).
thf('thm/sets/CARD_',axiom,
! [A: $tType,A0: A > $o] :
( ( 'const/sets/CARD' @ A @ A0 )
= ( 'const/sets/ITSET' @ A @ 'type/nums/num'
@ ^ [A1: A,A2: 'type/nums/num'] : ( 'const/nums/SUC' @ A2 )
@ A0
@ ( 'const/nums/NUMERAL' @ 'const/nums/_0' ) ) ) ).
thf('thm/sets/FINITE_RECURSION_',axiom,
! [A: $tType,B: $tType,A0: A > B > B,A1: B] :
( ! [A2: A,A3: A,A4: B] :
( ( A2 != A3 )
=> ( ( A0 @ A2 @ ( A0 @ A3 @ A4 ) )
= ( A0 @ A3 @ ( A0 @ A2 @ A4 ) ) ) )
=> ( ( ( 'const/sets/ITSET' @ A @ B @ A0 @ ( 'const/sets/EMPTY' @ A ) @ A1 )
= A1 )
& ! [A2: A,A3: A > $o] :
( ( 'const/sets/FINITE' @ A @ A3 )
=> ( ( 'const/sets/ITSET' @ A @ B @ A0 @ ( 'const/sets/INSERT' @ A @ A2 @ A3 ) @ A1 )
= ( 'const/class/COND' @ B @ ( 'const/sets/IN' @ A @ A2 @ A3 ) @ ( 'const/sets/ITSET' @ A @ B @ A0 @ A3 @ A1 ) @ ( A0 @ A2 @ ( 'const/sets/ITSET' @ A @ B @ A0 @ A3 @ A1 ) ) ) ) ) ) ) ).
thf('thm/sets/CARD_CLAUSES_1',conjecture,
! [A: $tType,A0: A,A1: A > $o] :
( ( 'const/sets/FINITE' @ A @ A1 )
=> ( ( 'const/sets/CARD' @ A @ ( 'const/sets/INSERT' @ A @ A0 @ A1 ) )
= ( 'const/class/COND' @ 'type/nums/num' @ ( 'const/sets/IN' @ A @ A0 @ A1 ) @ ( 'const/sets/CARD' @ A @ A1 ) @ ( 'const/nums/SUC' @ ( 'const/sets/CARD' @ A @ A1 ) ) ) ) ) ).
%------------------------------------------------------------------------------