TPTP Problem File: SEV473^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV473^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Analysis
% Problem : FINITE_FINITE_UNIONS
% Version : Especial.
% English :
% Refs : [Kal16] Kalisyk (2016), Email to Geoff Sutcliffe
% Source : [Kal16]
% Names : FINITE_FINITE_UNIONS_.p [Kal16]
% Status : Theorem
% Rating : 1.00 v7.1.0
% Syntax : Number of formulae : 14 ( 4 unt; 6 typ; 0 def)
% Number of atoms : 32 ( 6 equ; 0 cnn)
% Maximal formula atoms : 3 ( 4 avg)
% Number of connectives : 69 ( 1 ~; 1 |; 2 &; 60 @)
% ( 0 <=>; 5 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 6 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 36 ( 36 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 6 usr; 0 con; 2-4 aty)
% Number of variables : 28 ( 0 ^; 22 !; 0 ?; 28 :)
% ( 6 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : Exported from core HOL Light.
%------------------------------------------------------------------------------
thf('thf_const_const/sets/UNIONS',type,
'const/sets/UNIONS':
!>[A: $tType] : ( ( ( A > $o ) > $o ) > A > $o ) ).
thf('thf_const_const/sets/UNION',type,
'const/sets/UNION':
!>[A: $tType] : ( ( A > $o ) > ( A > $o ) > A > $o ) ).
thf('thf_const_const/sets/INSERT',type,
'const/sets/INSERT':
!>[A: $tType] : ( A > ( A > $o ) > A > $o ) ).
thf('thf_const_const/sets/IN',type,
'const/sets/IN':
!>[A: $tType] : ( A > ( A > $o ) > $o ) ).
thf('thf_const_const/sets/FINITE',type,
'const/sets/FINITE':
!>[A: $tType] : ( ( A > $o ) > $o ) ).
thf('thf_const_const/sets/EMPTY',type,
'const/sets/EMPTY':
!>[A: $tType] : ( A > $o ) ).
thf('thm/sets/FINITE_INDUCT_',axiom,
! [A: $tType,A0: ( A > $o ) > $o] :
( ( ( A0 @ ( 'const/sets/EMPTY' @ A ) )
& ! [A1: A,A2: A > $o] :
( ( A0 @ A2 )
=> ( A0 @ ( 'const/sets/INSERT' @ A @ A1 @ A2 ) ) ) )
=> ! [A1: A > $o] :
( ( 'const/sets/FINITE' @ A @ A1 )
=> ( A0 @ A1 ) ) ) ).
thf('thm/sets/FINITE_UNION_',axiom,
! [A: $tType,A0: A > $o,A1: A > $o] :
( ( 'const/sets/FINITE' @ A @ ( 'const/sets/UNION' @ A @ A0 @ A1 ) )
= ( ( 'const/sets/FINITE' @ A @ A0 )
& ( 'const/sets/FINITE' @ A @ A1 ) ) ) ).
thf('thm/sets/FINITE_RULES_0',axiom,
! [A: $tType] : ( 'const/sets/FINITE' @ A @ ( 'const/sets/EMPTY' @ A ) ) ).
thf('thm/sets/IN_INSERT_',axiom,
! [A: $tType,A0: A,A1: A,A2: A > $o] :
( ( 'const/sets/IN' @ A @ A0 @ ( 'const/sets/INSERT' @ A @ A1 @ A2 ) )
= ( ( A0 = A1 )
| ( 'const/sets/IN' @ A @ A0 @ A2 ) ) ) ).
thf('thm/sets/UNIONS_INSERT_',axiom,
! [A: $tType,A0: A > $o,A1: ( A > $o ) > $o] :
( ( 'const/sets/UNIONS' @ A @ ( 'const/sets/INSERT' @ ( A > $o ) @ A0 @ A1 ) )
= ( 'const/sets/UNION' @ A @ A0 @ ( 'const/sets/UNIONS' @ A @ A1 ) ) ) ).
thf('thm/sets/NOT_IN_EMPTY_',axiom,
! [A: $tType,A0: A] :
~ ( 'const/sets/IN' @ A @ A0 @ ( 'const/sets/EMPTY' @ A ) ) ).
thf('thm/sets/UNIONS_0_',axiom,
! [A: $tType] :
( ( 'const/sets/UNIONS' @ A @ ( 'const/sets/EMPTY' @ ( A > $o ) ) )
= ( 'const/sets/EMPTY' @ A ) ) ).
thf('thm/sets/FINITE_FINITE_UNIONS_',conjecture,
! [A: $tType,A0: ( A > $o ) > $o] :
( ( 'const/sets/FINITE' @ ( A > $o ) @ A0 )
=> ( ( 'const/sets/FINITE' @ A @ ( 'const/sets/UNIONS' @ A @ A0 ) )
= ( ! [A1: A > $o] :
( ( 'const/sets/IN' @ ( A > $o ) @ A1 @ A0 )
=> ( 'const/sets/FINITE' @ A @ A1 ) ) ) ) ) ).
%------------------------------------------------------------------------------