TPTP Problem File: SEV471^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV471^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Analysis
% Problem : BIJECTIVE_ON_LEFT_RIGHT_INVERSE
% Version : Especial.
% English :
% Refs : [Kal16] Kalisyk (2016), Email to Geoff Sutcliffe
% Source : [Kal16]
% Names : BIJECTIVE_ON_LEFT_RIGHT_INVERSE_.p [Kal16]
% Status : Theorem
% Rating : 0.67 v9.0.0, 1.00 v7.5.0, 0.67 v7.3.0, 1.00 v7.1.0
% Syntax : Number of formulae : 6 ( 3 unt; 2 typ; 0 def)
% Number of atoms : 31 ( 14 equ; 0 cnn)
% Maximal formula atoms : 3 ( 7 avg)
% Number of connectives : 91 ( 0 ~; 0 |; 10 &; 70 @)
% ( 0 <=>; 11 =>; 0 <=; 0 <~>)
% Maximal formula depth : 12 ( 7 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 15 ( 15 >; 0 *; 0 +; 0 <<)
% Number of symbols : 3 ( 2 usr; 0 con; 2-3 aty)
% Number of variables : 35 ( 0 ^; 28 !; 5 ?; 35 :)
% ( 2 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_NAR
% Comments : Exported from core HOL Light.
%------------------------------------------------------------------------------
thf('thf_const_const/trivia/I',type,
'const/trivia/I':
!>[A: $tType] : ( A > A ) ).
thf('thf_const_const/sets/IN',type,
'const/sets/IN':
!>[A: $tType] : ( A > ( A > $o ) > $o ) ).
thf('thm/trivia/I_THM_',axiom,
! [A: $tType,A0: A] :
( ( 'const/trivia/I' @ A @ A0 )
= A0 ) ).
thf('thm/sets/SURJECTIVE_ON_RIGHT_INVERSE_',axiom,
! [A: $tType,A0: $tType,A1: A > $o,A2: A > A0,A3: A0 > $o] :
( ( ! [A4: A0] :
( ( 'const/sets/IN' @ A0 @ A4 @ A3 )
=> ? [A5: A] :
( ( 'const/sets/IN' @ A @ A5 @ A1 )
& ( ( A2 @ A5 )
= A4 ) ) ) )
= ( ? [A4: A0 > A] :
! [A5: A0] :
( ( 'const/sets/IN' @ A0 @ A5 @ A3 )
=> ( ( 'const/sets/IN' @ A @ ( A4 @ A5 ) @ A1 )
& ( ( A2 @ ( A4 @ A5 ) )
= A5 ) ) ) ) ) ).
thf('thm/sets/INJECTIVE_ON_LEFT_INVERSE_',axiom,
! [A: $tType,A0: $tType,A1: A0 > A,A2: A0 > $o] :
( ( ! [A3: A0,A4: A0] :
( ( ( 'const/sets/IN' @ A0 @ A3 @ A2 )
& ( 'const/sets/IN' @ A0 @ A4 @ A2 )
& ( ( A1 @ A3 )
= ( A1 @ A4 ) ) )
=> ( A3 = A4 ) ) )
= ( ? [A3: A > A0] :
! [A4: A0] :
( ( 'const/sets/IN' @ A0 @ A4 @ A2 )
=> ( ( A3 @ ( A1 @ A4 ) )
= A4 ) ) ) ) ).
thf('thm/sets/BIJECTIVE_ON_LEFT_RIGHT_INVERSE_',conjecture,
! [A: $tType,A0: $tType,A1: A0 > A,A2: A0 > $o,A3: A > $o] :
( ! [A4: A0] :
( ( 'const/sets/IN' @ A0 @ A4 @ A2 )
=> ( 'const/sets/IN' @ A @ ( A1 @ A4 ) @ A3 ) )
=> ( ( ! [A4: A0,A5: A0] :
( ( ( 'const/sets/IN' @ A0 @ A4 @ A2 )
& ( 'const/sets/IN' @ A0 @ A5 @ A2 )
& ( ( A1 @ A4 )
= ( A1 @ A5 ) ) )
=> ( A4 = A5 ) )
& ! [A4: A] :
( ( 'const/sets/IN' @ A @ A4 @ A3 )
=> ? [A5: A0] :
( ( 'const/sets/IN' @ A0 @ A5 @ A2 )
& ( ( A1 @ A5 )
= A4 ) ) ) )
= ( ? [A4: A > A0] :
( ! [A5: A] :
( ( 'const/sets/IN' @ A @ A5 @ A3 )
=> ( 'const/sets/IN' @ A0 @ ( A4 @ A5 ) @ A2 ) )
& ! [A5: A] :
( ( 'const/sets/IN' @ A @ A5 @ A3 )
=> ( ( A1 @ ( A4 @ A5 ) )
= A5 ) )
& ! [A5: A0] :
( ( 'const/sets/IN' @ A0 @ A5 @ A2 )
=> ( ( A4 @ ( A1 @ A5 ) )
= A5 ) ) ) ) ) ) ).
%------------------------------------------------------------------------------