TPTP Problem File: SEV443^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV443^1 : TPTP v9.0.0. Released v7.0.0.
% Domain : Set Theory (Combinatorics, finite sets)
% Problem : International Mathematical Olympiad, 1994, Problem 6
% Version : [Mat16] axioms : Especial.
% English : Show that there exists a set A of positive integers with the
% following property: For any in finite set S of primes there
% exist two positive integers m in A and n in A each of which is
% a product of k distinct elements of S for some k >= 2.
% Refs : [Mat16] Matsuzaki (2016), Email to Geoff Sutcliffe
% : [MI+16] Matsuzaki et al. (2016), Race against the Teens - Benc
% Source : [Mat16]
% Names : IMO-1994-6.p [Mat16]
% Status : Theorem
% Rating : ? v7.0.0
% Syntax : Number of formulae : 3485 ( 728 unt;1199 typ; 0 def)
% Number of atoms : 6398 (2211 equ; 0 cnn)
% Maximal formula atoms : 20 ( 2 avg)
% Number of connectives : 39620 ( 106 ~; 233 |;1179 &;35975 @)
% (1095 <=>;1032 =>; 0 <=; 0 <~>)
% Maximal formula depth : 33 ( 8 avg)
% Number arithmetic : 4471 ( 372 atm;1205 fun; 952 num;1942 var)
% Number of types : 40 ( 36 usr; 3 ari)
% Number of type conns : 2408 (2408 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1209 (1166 usr; 63 con; 0-9 aty)
% Number of variables : 8062 ( 405 ^;7086 !; 435 ?;8062 :)
% ( 136 !>; 0 ?*; 0 @-; 0 @+)
% SPC : TH1_THM_EQU_ARI
% Comments : Theory: ZF; Score: 7; Author: Jumma Kudo;
% Generated: 2014-11-12
%------------------------------------------------------------------------------
include('Axioms/MAT001^0.ax').
%------------------------------------------------------------------------------
thf(p,conjecture,
? [V_A: 'SetOf' @ $int] :
( ! [V_e: $int] :
( ( 'elem/2' @ $int @ V_e @ V_A )
=> ( $greater @ V_e @ 0 ) )
& ? [V_k: $int,V_p: $int,V_q: $int,V_m: $int,V_n: $int] :
( ( 'int.is-prime/1' @ V_p )
& ( 'int.is-prime/1' @ V_q )
& ( V_p != V_q )
& ( 'elem/2' @ $int @ V_m @ V_A )
& ~ ( 'elem/2' @ $int @ V_n @ V_A )
& ( V_m
= ( $product @ V_k @ V_p ) )
& ( V_n
= ( $product @ V_k @ V_q ) ) ) ) ).
%------------------------------------------------------------------------------