TPTP Problem File: SEV427^1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV427^1 : TPTP v9.0.0. Released v5.2.0.
% Domain : Set Theory
% Problem : If two sets cover a type, a choice function must give an element
% Version : Especial.
% English :
% Refs : [Bro11] Brown (2011), Email to Geoff Sutcliffe
% Source : [Bro11]
% Names : CHOICE33 [Bro11]
% Status : Theorem
% Rating : 0.00 v8.1.0, 0.08 v7.4.0, 0.00 v6.2.0, 0.17 v6.0.0, 0.00 v5.2.0
% Syntax : Number of formulae : 6 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 6 ( 0 equ; 0 cnn)
% Maximal formula atoms : 4 ( 2 avg)
% Number of connectives : 12 ( 0 ~; 2 |; 0 &; 9 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 5 ( 5 >; 0 *; 0 +; 0 <<)
% Number of symbols : 3 ( 3 usr; 0 con; 1-1 aty)
% Number of variables : 3 ( 0 ^; 2 !; 1 ?; 3 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : Assume eps is a choice function on $i and p and q are sets
% covering $i. Since $i is nonempty, either p or q is nonempty and
% so (eps @ p) is in p or (eps @ q) is in q.
%------------------------------------------------------------------------------
thf(eps,type,
eps: ( $i > $o ) > $i ).
thf(choiceax,axiom,
! [P: $i > $o] :
( ? [X: $i] : ( P @ X )
=> ( P @ ( eps @ P ) ) ) ).
thf(p,type,
p: $i > $o ).
thf(q,type,
q: $i > $o ).
thf(pq,axiom,
! [X: $i] :
( ( p @ X )
| ( q @ X ) ) ).
thf(conj,conjecture,
( ( p @ ( eps @ p ) )
| ( q @ ( eps @ q ) ) ) ).
%------------------------------------------------------------------------------