TPTP Problem File: SEV426_1.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV426_1 : TPTP v9.0.0. Released v5.0.0.
% Domain : Set Theory
% Problem : Bound on the number of allocated objects in a recursive function
% Version : Especial.
% English : Bound on the number of allocated objects in a recursive function
% that incorporates container C into another container.
% Refs : [KNR07] Kuncak et al. (2007), Deciding Boolean Algebra with Pr
% : [KR07] Kuncak & Rinard (2007), Towards Efficient Satisfiabili
% Source : [KR07]
% Names : VC#6 [KR07]
% Status : CounterSatisfiable
% Rating : 0.67 v9.0.0, 1.00 v8.2.0, 0.67 v7.1.0, 0.75 v7.0.0, 0.67 v6.3.0, 1.00 v5.0.0
% Syntax : Number of formulae : 24 ( 0 unt; 11 typ; 0 def)
% Number of atoms : 33 ( 13 equ)
% Maximal formula atoms : 5 ( 1 avg)
% Number of connectives : 23 ( 3 ~; 1 |; 5 &)
% ( 12 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 11 ( 5 avg)
% Maximal term depth : 4 ( 1 avg)
% Number arithmetic : 9 ( 3 atm; 2 fun; 4 num; 0 var)
% Number of types : 4 ( 2 usr; 1 ari)
% Number of type conns : 13 ( 8 >; 5 *; 0 +; 0 <<)
% Number of predicates : 4 ( 2 usr; 0 prp; 2-2 aty)
% Number of functors : 10 ( 7 usr; 3 con; 0-2 aty)
% Number of variables : 33 ( 33 !; 0 ?; 33 :)
% SPC : TF0_CSA_EQU_ARI
% Comments :
%------------------------------------------------------------------------------
tff(set_type,type,
set: $tType ).
tff(element_type,type,
element: $tType ).
tff(empty_set_type,type,
empty_set: set ).
tff(singleton_type,type,
singleton: element > set ).
tff(member_type,type,
member: ( element * set ) > $o ).
tff(subset_type,type,
subset: ( set * set ) > $o ).
tff(intersection_type,type,
intersection: ( set * set ) > set ).
tff(union_type,type,
union: ( set * set ) > set ).
tff(difference_type,type,
difference: ( set * set ) > set ).
tff(complement_type,type,
complement: set > set ).
tff(cardinality_type,type,
cardinality: set > $int ).
tff(empty_set,axiom,
! [S: set] :
( ! [X: element] : ~ member(X,S)
<=> ( S = empty_set ) ) ).
tff(singleton,axiom,
! [X: element,A: element] :
( member(X,singleton(A))
<=> ( X = A ) ) ).
tff(subset,axiom,
! [A: set,B: set] :
( subset(A,B)
<=> ! [X: element] :
( member(X,A)
=> member(X,B) ) ) ).
tff(intersection,axiom,
! [X: element,A: set,B: set] :
( member(X,intersection(A,B))
<=> ( member(X,A)
& member(X,B) ) ) ).
tff(union,axiom,
! [X: element,A: set,B: set] :
( member(X,union(A,B))
<=> ( member(X,A)
| member(X,B) ) ) ).
tff(difference,axiom,
! [B: element,A: set,E: set] :
( member(B,difference(E,A))
<=> ( member(B,E)
& ~ member(B,A) ) ) ).
tff(complement,axiom,
! [X: element,S: set] :
( member(X,S)
<=> ~ member(X,complement(S)) ) ).
%----From Swen (combined two of his)
tff(cardinality_empty_set,axiom,
! [S: set] :
( ( cardinality(S) = 0 )
<=> ( S = empty_set ) ) ).
tff(cardinality_intersection_1,axiom,
! [X: element,S: set] :
( ( intersection(singleton(X),S) = singleton(X) )
<=> ( cardinality(union(singleton(X),S)) = cardinality(S) ) ) ).
tff(cardinality_intersection_2,axiom,
! [X: element,S: set] :
( ( intersection(singleton(X),S) = empty_set )
<=> ( cardinality(union(singleton(X),S)) = $sum(cardinality(S),1) ) ) ).
tff(cardinality_intersection_3,axiom,
! [S: set,T: set] :
( ( cardinality(intersection(S,T)) = 0 )
<=> ( intersection(S,T) = empty_set ) ) ).
%----From Swen, modified to <=>
tff(cardinality_union,axiom,
! [A: set,B: set] :
( ( intersection(A,B) = empty_set )
<=> ( cardinality(union(A,B)) = $sum(cardinality(A),cardinality(B)) ) ) ).
tff(vc6,conjecture,
! [X: element,C: set,C1: set,A0: set,A1: set,A2: set] :
( ( member(X,C)
& ( C1 = difference(C,singleton(X)) )
& $lesseq(cardinality(difference(A1,A0)),1)
& $lesseq(cardinality(difference(A2,A1)),cardinality(C1)) )
=> $lesseq(cardinality(difference(A2,A0)),cardinality(C)) ) ).
%------------------------------------------------------------------------------