TPTP Problem File: SEV364^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV364^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (GvNB)
% Problem : TPS problem from GVB-MB-AXIOMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0898 [Bro09]
% Status : CounterSatisfiable
% Rating : 0.00 v9.0.0, 0.25 v8.1.0, 0.00 v4.0.0
% Syntax : Number of formulae : 8 ( 0 unt; 7 typ; 0 def)
% Number of atoms : 8 ( 1 equ; 0 cnn)
% Maximal formula atoms : 8 ( 8 avg)
% Number of connectives : 25 ( 0 ~; 0 |; 6 &; 18 @)
% ( 1 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 15 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 8 ( 7 usr; 3 con; 0-2 aty)
% Number of variables : 3 ( 0 ^; 0 !; 3 ?; 3 :)
% SPC : TH0_CSA_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(g,type,
g: $i ).
thf(f,type,
f: $i ).
thf(z,type,
z: $i ).
thf(cGVB_OP,type,
cGVB_OP: $i > $i > $i ).
thf(cGVB_IN,type,
cGVB_IN: $i > $i > $o ).
thf(cGVB_M,type,
cGVB_M: $i > $o ).
thf(cGVB_COMPOSE,type,
cGVB_COMPOSE: $i > $i > $i ).
thf(cGVB_AX_COMPOSE,conjecture,
( ( cGVB_IN @ z @ ( cGVB_COMPOSE @ g @ f ) )
<=> ( ( cGVB_M @ z )
& ? [Xx: $i,Xy: $i,Xw: $i] :
( ( cGVB_M @ Xx )
& ( cGVB_M @ Xy )
& ( cGVB_M @ Xw )
& ( z
= ( cGVB_OP @ Xx @ Xy ) )
& ( cGVB_IN @ ( cGVB_OP @ Xx @ Xw ) @ f )
& ( cGVB_IN @ ( cGVB_OP @ Xw @ Xy ) @ g ) ) ) ) ).
%------------------------------------------------------------------------------