TPTP Problem File: SEV363^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV363^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (GvNB)
% Problem : TPS problem from GVB-MB-AXIOMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0884 [Bro09]
% Status : CounterSatisfiable
% Rating : 0.00 v9.0.0, 0.25 v8.1.0, 0.00 v4.0.0
% Syntax : Number of formulae : 7 ( 0 unt; 6 typ; 0 def)
% Number of atoms : 7 ( 1 equ; 0 cnn)
% Maximal formula atoms : 7 ( 7 avg)
% Number of connectives : 23 ( 0 ~; 0 |; 5 &; 17 @)
% ( 1 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 15 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 6 usr; 2 con; 0-2 aty)
% Number of variables : 3 ( 0 ^; 0 !; 3 ?; 3 :)
% SPC : TH0_CSA_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(x,type,
x: $i ).
thf(z,type,
z: $i ).
thf(cGVB_OP,type,
cGVB_OP: $i > $i > $i ).
thf(cGVB_IN,type,
cGVB_IN: $i > $i > $o ).
thf(cGVB_M,type,
cGVB_M: $i > $o ).
thf(cGVB_ROT_RIGHT,type,
cGVB_ROT_RIGHT: $i > $i ).
thf(cGVB_B7,conjecture,
( ( cGVB_IN @ z @ ( cGVB_ROT_RIGHT @ x ) )
<=> ( ( cGVB_M @ z )
& ? [Xu: $i,Xv: $i,Xw: $i] :
( ( cGVB_M @ Xu )
& ( cGVB_M @ Xv )
& ( cGVB_M @ Xw )
& ( z
= ( cGVB_OP @ Xu @ ( cGVB_OP @ Xv @ Xw ) ) )
& ( cGVB_IN @ ( cGVB_OP @ Xv @ ( cGVB_OP @ Xw @ Xu ) ) @ x ) ) ) ) ).
%------------------------------------------------------------------------------