TPTP Problem File: SEV345^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV345^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (GvNB)
% Problem : TPS problem from GVB-MB-AXIOMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0740 [Bro09]
% Status : CounterSatisfiable
% Rating : 0.00 v5.4.0, 0.67 v5.0.0, 0.00 v4.0.0
% Syntax : Number of formulae : 9 ( 0 unt; 8 typ; 0 def)
% Number of atoms : 4 ( 1 equ; 0 cnn)
% Maximal formula atoms : 4 ( 4 avg)
% Number of connectives : 11 ( 0 ~; 0 |; 2 &; 8 @)
% ( 1 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 7 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 8 ( 8 >; 0 *; 0 +; 0 <<)
% Number of symbols : 9 ( 8 usr; 3 con; 0-3 aty)
% Number of variables : 0 ( 0 ^; 0 !; 0 ?; 0 :)
% SPC : TH0_CSA_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(y,type,
y: $i ).
thf(f,type,
f: $i ).
thf(x,type,
x: $i ).
thf(cGVB_RANGE,type,
cGVB_RANGE: $i > $i ).
thf(cGVB_SUBSET,type,
cGVB_SUBSET: $i > $i > $o ).
thf(cGVB_DOMAIN,type,
cGVB_DOMAIN: $i > $i ).
thf(cGVB_FUNCTION,type,
cGVB_FUNCTION: $i > $o ).
thf(cGVB_MAPS,type,
cGVB_MAPS: $i > $i > $i > $o ).
thf(cGVB_AX_MAPS,conjecture,
( ( cGVB_MAPS @ f @ x @ y )
<=> ( ( cGVB_FUNCTION @ f )
& ( ( cGVB_DOMAIN @ f )
= x )
& ( cGVB_SUBSET @ ( cGVB_RANGE @ f ) @ y ) ) ) ).
%------------------------------------------------------------------------------