TPTP Problem File: SEV331^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV331^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (GvNB)
% Problem : TPS problem from GVB-MB-AXIOMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0637 [Bro09]
% Status : CounterSatisfiable
% Rating : 0.00 v5.4.0, 0.67 v5.0.0, 0.00 v4.0.0
% Syntax : Number of formulae : 6 ( 1 unt; 5 typ; 0 def)
% Number of atoms : 1 ( 1 equ; 0 cnn)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 7 ( 0 ~; 0 |; 0 &; 7 @)
% ( 0 <=>; 0 =>; 0 <=; 0 <~>)
% Maximal formula depth : 1 ( 1 avg)
% Number of types : 1 ( 0 usr)
% Number of type conns : 5 ( 5 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 5 usr; 2 con; 0-2 aty)
% Number of variables : 0 ( 0 ^; 0 !; 0 ?; 0 :)
% SPC : TH0_CSA_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(y,type,
y: $i ).
thf(x,type,
x: $i ).
thf(cGVB_NOP,type,
cGVB_NOP: $i > $i > $i ).
thf(cGVB_SING,type,
cGVB_SING: $i > $i ).
thf(cGVB_OP,type,
cGVB_OP: $i > $i > $i ).
thf(cGVB_AX_OP,conjecture,
( ( cGVB_OP @ x @ y )
= ( cGVB_NOP @ ( cGVB_SING @ x ) @ ( cGVB_NOP @ x @ y ) ) ) ).
%------------------------------------------------------------------------------