TPTP Problem File: SEV316^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV316^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory
% Problem : TPS problem from CLOS-SYS-FP-THMS
% Version : Especial.
% English : Related to the Knaster-Tarski theorem.
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1206 [Bro09]
% Status : CounterSatisfiable
% Rating : 1.00 v5.4.0, 0.67 v5.2.0, 1.00 v4.0.0
% Syntax : Number of formulae : 6 ( 0 unt; 5 typ; 0 def)
% Number of atoms : 23 ( 2 equ; 0 cnn)
% Maximal formula atoms : 17 ( 23 avg)
% Number of connectives : 106 ( 0 ~; 0 |; 11 &; 77 @)
% ( 0 <=>; 18 =>; 0 <=; 0 <~>)
% Maximal formula depth : 21 ( 21 avg)
% Number of types : 4 ( 3 usr)
% Number of type conns : 45 ( 45 >; 0 *; 0 +; 0 <<)
% Number of symbols : 3 ( 2 usr; 0 con; 1-4 aty)
% Number of variables : 44 ( 12 ^; 32 !; 0 ?; 44 :)
% SPC : TH0_CSA_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(b_type,type,
b: $tType ).
thf(c_type,type,
c: $tType ).
thf(cF,type,
cF: ( a > b > c > $o ) > a > b > c > $o ).
thf(cCL,type,
cCL: ( a > b > c > $o ) > $o ).
thf(cFP_THM3_INST_pme,conjecture,
( ( ! [S: ( a > b > c > $o ) > $o] :
( ! [Xx: a > b > c > $o] :
( ( S @ Xx )
=> ( cCL @ Xx ) )
=> ( cCL
@ ^ [Xa: a,Xb: b,Xc: c] :
! [R: a > b > c > $o] :
( ( S @ R )
=> ( R @ Xa @ Xb @ Xc ) ) ) )
& ! [R: a > b > c > $o] :
( ( cCL @ R )
=> ( cCL @ ( cF @ R ) ) )
& ! [R: a > b > c > $o,S: a > b > c > $o] :
( ( ( cCL @ R )
& ( cCL @ S )
& ! [Xa: a,Xb: b,Xc: c] :
( ( R @ Xa @ Xb @ Xc )
=> ( S @ Xa @ Xb @ Xc ) ) )
=> ! [Xa: a,Xb: b,Xc: c] :
( ( cF @ R @ Xa @ Xb @ Xc )
=> ( cF @ S @ Xa @ Xb @ Xc ) ) ) )
=> ( ( cCL
@ ^ [Xa: a,Xb: b,Xc: c] :
! [R: a > b > c > $o] :
( ( ( cCL @ R )
& ! [Xa0: a,Xb0: b,Xc0: c] :
( ( cF @ R @ Xa0 @ Xb0 @ Xc0 )
=> ( R @ Xa0 @ Xb0 @ Xc0 ) ) )
=> ( R @ Xa @ Xb @ Xc ) ) )
& ( ( cF
@ ^ [Xa: a,Xb: b,Xc: c] :
! [R: a > b > c > $o] :
( ( ( cCL @ R )
& ! [Xa0: a,Xb0: b,Xc0: c] :
( ( cF @ R @ Xa0 @ Xb0 @ Xc0 )
=> ( R @ Xa0 @ Xb0 @ Xc0 ) ) )
=> ( R @ Xa @ Xb @ Xc ) ) )
= ( ^ [Xa: a,Xb: b,Xc: c] :
! [R: a > b > c > $o] :
( ( ( cCL @ R )
& ! [Xa0: a,Xb0: b,Xc0: c] :
( ( cF @ R @ Xa0 @ Xb0 @ Xc0 )
=> ( R @ Xa0 @ Xb0 @ Xc0 ) ) )
=> ( R @ Xa @ Xb @ Xc ) ) ) )
& ! [Y: a > b > c > $o] :
( ( ( cCL @ Y )
& ( ( cF @ Y )
= Y ) )
=> ! [Xa: a,Xb: b,Xc: c] :
( ! [R: a > b > c > $o] :
( ( ( cCL @ R )
& ! [Xa0: a,Xb0: b,Xc0: c] :
( ( cF @ R @ Xa0 @ Xb0 @ Xc0 )
=> ( R @ Xa0 @ Xb0 @ Xc0 ) ) )
=> ( R @ Xa @ Xb @ Xc ) )
=> ( Y @ Xa @ Xb @ Xc ) ) ) ) ) ).
%------------------------------------------------------------------------------