TPTP Problem File: SEV314^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV314^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory
% Problem : TPS problem from CLOS-SYS-FP-THMS
% Version : Especial.
% English : Related to the Knaster-Tarski theorem.
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1101 [Bro09]
% Status : Unknown
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 5 ( 0 unt; 4 typ; 0 def)
% Number of atoms : 15 ( 2 equ; 0 cnn)
% Maximal formula atoms : 13 ( 15 avg)
% Number of connectives : 46 ( 0 ~; 0 |; 7 &; 29 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 14 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 25 ( 25 >; 0 *; 0 +; 0 <<)
% Number of symbols : 3 ( 2 usr; 0 con; 1-3 aty)
% Number of variables : 16 ( 2 ^; 13 !; 1 ?; 16 :)
% SPC : TH0_UNK_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(b_type,type,
b: $tType ).
thf(cF,type,
cF: ( a > b > $o ) > a > b > $o ).
thf(cCL,type,
cCL: ( a > b > $o ) > $o ).
thf(cFP_THM2_pme,conjecture,
( ( ! [S: ( a > b > $o ) > $o] :
( ! [Xx: a > b > $o] :
( ( S @ Xx )
=> ( cCL @ Xx ) )
=> ( cCL
@ ^ [Xa: a,Xb: b] :
! [R: a > b > $o] :
( ( S @ R )
=> ( R @ Xa @ Xb ) ) ) )
& ! [R: a > b > $o] :
( ( cCL @ R )
=> ( cCL @ ( cF @ R ) ) )
& ! [R: a > b > $o,S: a > b > $o] :
( ( ( cCL @ R )
& ( cCL @ S )
& ! [Xa: a,Xb: b] :
( ( R @ Xa @ Xb )
=> ( S @ Xa @ Xb ) ) )
=> ! [Xa: a,Xb: b] :
( ( cF @ R @ Xa @ Xb )
=> ( cF @ S @ Xa @ Xb ) ) ) )
=> ? [X: a > b > $o] :
( ( cCL @ X )
& ( ( cF @ X )
= X )
& ! [Y: a > b > $o] :
( ( ( cCL @ Y )
& ( ( cF @ Y )
= Y ) )
=> ! [Xa: a,Xb: b] :
( ( X @ Xa @ Xb )
=> ( Y @ Xa @ Xb ) ) ) ) ) ).
%------------------------------------------------------------------------------