TPTP Problem File: SEV304^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV304^5 : TPTP v9.0.0. Bugfixed v6.2.0.
% Domain : Set Theory
% Problem : TPS problem from TTTP-NATS-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1112 [Bro09]
% Status : CounterSatisfiable
% Rating : 0.67 v9.0.0, 1.00 v8.1.0, 0.60 v7.4.0, 0.50 v7.2.0, 0.33 v6.4.0, 0.67 v6.3.0, 0.33 v6.2.0
% Syntax : Number of formulae : 7 ( 3 unt; 3 typ; 3 def)
% Number of atoms : 27 ( 10 equ; 0 cnn)
% Maximal formula atoms : 16 ( 6 avg)
% Number of connectives : 69 ( 8 ~; 1 |; 15 &; 41 @)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 6 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 19 ( 19 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 3 usr; 0 con; 1-2 aty)
% Number of variables : 20 ( 7 ^; 6 !; 7 ?; 20 :)
% SPC : TH0_CSA_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% Bugfixes : v5.2.0 - Added missing type declarations.
% : v6.2.0 - Reordered definitions.
%------------------------------------------------------------------------------
thf(cONE_type,type,
cONE: ( $i > $o ) > $o ).
thf(cSUCC_type,type,
cSUCC: ( ( $i > $o ) > $o ) > ( $i > $o ) > $o ).
thf(cZERO_type,type,
cZERO: ( $i > $o ) > $o ).
thf(cZERO_def,definition,
( cZERO
= ( ^ [Xp: $i > $o] :
~ ? [Xx: $i] : ( Xp @ Xx ) ) ) ).
thf(cSUCC_def,definition,
( cSUCC
= ( ^ [Xn: ( $i > $o ) > $o,Xp: $i > $o] :
? [Xx: $i] :
( ( Xp @ Xx )
& ( Xn
@ ^ [Xt: $i] :
( ( Xt != Xx )
& ( Xp @ Xt ) ) ) ) ) ) ).
thf(cONE_def,definition,
( cONE
= ( cSUCC @ cZERO ) ) ).
thf(cSIXPEOPLE_pme,conjecture,
! [K: $i > $i > $o,S: $i > $o] :
( ( ? [Xs: $i > $i > $o] :
( ! [Xx: $i] :
( ( S @ Xx )
=> ( cSUCC @ ( cSUCC @ ( cSUCC @ ( cSUCC @ ( cSUCC @ cONE ) ) ) ) @ ( Xs @ Xx ) ) )
& ! [Xy: $i > $o] :
( ( cSUCC @ ( cSUCC @ ( cSUCC @ ( cSUCC @ ( cSUCC @ cONE ) ) ) ) @ Xy )
=> ? [Xy0: $i] :
( ( ^ [Xx: $i] :
( ( S @ Xx )
& ( Xy
= ( Xs @ Xx ) ) ) )
= ( ^ [Xx: $i,Xy: $i] : ( Xx = Xy )
@ Xy0 ) ) ) )
& ! [Xx: $i,Xy: $i] :
( ( K @ Xx @ Xy )
=> ( K @ Xy @ Xx ) ) )
=> ? [Xx: $i,Xy: $i,Xz: $i] :
( ( S @ Xx )
& ( S @ Xy )
& ( S @ Xz )
& ( Xx != Xy )
& ( Xy != Xz )
& ( Xz != Xx )
& ( ( ( K @ Xx @ Xy )
& ( K @ Xy @ Xz )
& ( K @ Xx @ Xz ) )
| ( ~ ( K @ Xx @ Xy )
& ~ ( K @ Xy @ Xz )
& ~ ( K @ Xx @ Xz ) ) ) ) ) ).
%------------------------------------------------------------------------------