TPTP Problem File: SEV298^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV298^5 : TPTP v9.0.0. Bugfixed v5.2.0.
% Domain : Set Theory
% Problem : TPS problem from TTTP-NATS-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0710 [Bro09]
% Status : CounterSatisfiable
% Rating : 0.67 v9.0.0, 1.00 v8.1.0, 0.60 v7.4.0, 0.50 v7.2.0, 0.33 v6.4.0, 0.67 v6.3.0, 0.33 v5.2.0
% Syntax : Number of formulae : 9 ( 2 unt; 6 typ; 2 def)
% Number of atoms : 13 ( 3 equ; 0 cnn)
% Maximal formula atoms : 7 ( 4 avg)
% Number of connectives : 23 ( 1 ~; 0 |; 5 &; 14 @)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 7 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 34 ( 34 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 6 usr; 0 con; 1-2 aty)
% Number of variables : 9 ( 5 ^; 2 !; 2 ?; 9 :)
% SPC : TH0_CSA_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% Bugfixes : v5.2.0 - Added missing type declarations.
%------------------------------------------------------------------------------
thf(c0_type,type,
c0: ( $i > $o ) > $o ).
thf(c1_type,type,
c1: ( $i > $o ) > $o ).
thf(c2_type,type,
c2: ( $i > $o ) > $o ).
thf(cP_type,type,
cP: ( ( $i > $o ) > $o ) > $o ).
thf(cSUCC_type,type,
cSUCC: ( ( $i > $o ) > $o ) > ( $i > $o ) > $o ).
thf(c_less__eq__type,type,
c_less__eq_: ( ( $i > $o ) > $o ) > ( ( $i > $o ) > $o ) > $o ).
thf(cSUCC_def,definition,
( cSUCC
= ( ^ [Xn: ( $i > $o ) > $o,Xp: $i > $o] :
? [Xx: $i] :
( ( Xp @ Xx )
& ( Xn
@ ^ [Xt: $i] :
( ( Xt != Xx )
& ( Xp @ Xt ) ) ) ) ) ) ).
thf(c_less__eq__def,definition,
( c_less__eq_
= ( ^ [Xx: ( $i > $o ) > $o,Xy: ( $i > $o ) > $o] :
! [Xp: ( ( $i > $o ) > $o ) > $o] :
( ( ( Xp @ Xx )
& ! [Xz: ( $i > $o ) > $o] :
( ( Xp @ Xz )
=> ( Xp @ ( cSUCC @ Xz ) ) ) )
=> ( Xp @ Xy ) ) ) ) ).
thf(cBLEDSOE7,conjecture,
( ( cP @ c1 )
=> ? [Xx: ( $i > $o ) > $o] :
( ( c_less__eq_ @ c0 @ Xx )
& ( c_less__eq_ @ Xx @ c2 )
& ( cP @ Xx ) ) ) ).
%------------------------------------------------------------------------------