TPTP Problem File: SEV290^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV290^5 : TPTP v9.0.0. Bugfixed v5.2.0.
% Domain : Set Theory
% Problem : TPS problem BLEDSOE1
% Version : Especial.
% English :
% Refs : [BF93] Bledsoe & Feng (1993), SET-VAR
% : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0170 [Bro09]
% : BLEDSOE1 [TPS]
% Status : Theorem
% Rating : 0.00 v9.0.0, 0.10 v8.2.0, 0.23 v8.1.0, 0.18 v7.5.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.12 v7.0.0, 0.00 v6.2.0, 0.29 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.2.0
% Syntax : Number of formulae : 6 ( 2 unt; 3 typ; 2 def)
% Number of atoms : 8 ( 3 equ; 0 cnn)
% Maximal formula atoms : 2 ( 2 avg)
% Number of connectives : 18 ( 1 ~; 0 |; 3 &; 11 @)
% ( 0 <=>; 3 =>; 0 <=; 0 <~>)
% Maximal formula depth : 6 ( 3 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 30 ( 30 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 3 usr; 0 con; 1-2 aty)
% Number of variables : 10 ( 5 ^; 3 !; 2 ?; 10 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% Bugfixes : v5.2.0 - Added missing type declarations.
%------------------------------------------------------------------------------
thf(c0_type,type,
c0: ( $i > $o ) > $o ).
thf(cSUCC_type,type,
cSUCC: ( ( $i > $o ) > $o ) > ( $i > $o ) > $o ).
thf(c_less__eq__type,type,
c_less__eq_: ( ( $i > $o ) > $o ) > ( ( $i > $o ) > $o ) > $o ).
thf(cSUCC_def,definition,
( cSUCC
= ( ^ [Xn: ( $i > $o ) > $o,Xp: $i > $o] :
? [Xx: $i] :
( ( Xp @ Xx )
& ( Xn
@ ^ [Xt: $i] :
( ( Xt != Xx )
& ( Xp @ Xt ) ) ) ) ) ) ).
thf(c_less__eq__def,definition,
( c_less__eq_
= ( ^ [Xx: ( $i > $o ) > $o,Xy: ( $i > $o ) > $o] :
! [Xp: ( ( $i > $o ) > $o ) > $o] :
( ( ( Xp @ Xx )
& ! [Xz: ( $i > $o ) > $o] :
( ( Xp @ Xz )
=> ( Xp @ ( cSUCC @ Xz ) ) ) )
=> ( Xp @ Xy ) ) ) ) ).
thf(cBLEDSOE1,conjecture,
? [A: ( ( $i > $o ) > $o ) > $o] :
! [Xx: ( $i > $o ) > $o] :
( ( A @ Xx )
=> ( c_less__eq_ @ Xx @ c0 ) ) ).
%------------------------------------------------------------------------------