TPTP Problem File: SEV281^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV281^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Sets of sets)
% Problem : TPS problem from WELL-ORD-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1151 [Bro09]
% Status : Unknown
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 3 ( 0 unt; 2 typ; 0 def)
% Number of atoms : 12 ( 2 equ; 0 cnn)
% Maximal formula atoms : 12 ( 12 avg)
% Number of connectives : 63 ( 0 ~; 2 |; 12 &; 37 @)
% ( 0 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 16 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 2 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 21 ( 0 ^; 17 !; 4 ?; 21 :)
% SPC : TH0_UNK_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cR,type,
cR: a > a > $o ).
thf(cTHM548_pme,conjecture,
( ( ? [W: a > a > $o] :
! [X: a > $o] :
( ? [Xz: a] : ( X @ Xz )
=> ? [Xz: a] :
( ( X @ Xz )
& ! [Xx: a] :
( ( X @ Xx )
=> ( W @ Xz @ Xx ) )
& ! [Xy: a] :
( ( ( X @ Xy )
& ! [Xx: a] :
( ( X @ Xx )
=> ( W @ Xy @ Xx ) ) )
=> ( Xy = Xz ) ) ) )
& ! [Xx: a,Xy: a,Xz: a] :
( ( ( cR @ Xx @ Xy )
& ( cR @ Xy @ Xz ) )
=> ( cR @ Xx @ Xz ) )
& ! [Xx: a] : ( cR @ Xx @ Xx )
& ! [Xx: a,Xy: a] :
( ( ( cR @ Xx @ Xy )
& ( cR @ Xy @ Xx ) )
=> ( Xx = Xy ) ) )
=> ? [S: a > $o] :
( ! [Xx: a,Xy: a] :
( ( ( S @ Xx )
& ( S @ Xy ) )
=> ( ( cR @ Xx @ Xy )
| ( cR @ Xy @ Xx ) ) )
& ! [T: a > $o] :
( ( ! [Xx: a,Xy: a] :
( ( ( T @ Xx )
& ( T @ Xy ) )
=> ( ( cR @ Xx @ Xy )
| ( cR @ Xy @ Xx ) ) )
& ! [Xx: a] :
( ( S @ Xx )
=> ( T @ Xx ) ) )
=> ! [Xx: a] :
( ( T @ Xx )
=> ( S @ Xx ) ) ) ) ) ).
%------------------------------------------------------------------------------