TPTP Problem File: SEV271^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV271^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Sets of sets)
% Problem : TPS problem from TOPOLOGY-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1212 [Bro09]
% Status : Unknown
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 3 ( 0 unt; 2 typ; 0 def)
% Number of atoms : 17 ( 13 equ; 0 cnn)
% Maximal formula atoms : 13 ( 17 avg)
% Number of connectives : 86 ( 4 ~; 0 |; 21 &; 40 @)
% ( 1 <=>; 20 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 18 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 32 ( 32 >; 0 *; 0 +; 0 <<)
% Number of symbols : 2 ( 0 usr; 1 con; 0-2 aty)
% Number of variables : 44 ( 11 ^; 29 !; 4 ?; 44 :)
% SPC : TH0_UNK_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(b_type,type,
b: $tType ).
thf(a_type,type,
a: $tType ).
thf(cCLOSURE_THM2_pme,conjecture,
! [S: ( b > $o ) > $o,T: ( a > $o ) > $o] :
( ( ! [R: a > $o] :
( ( R
= ( ^ [Xx: a] : $false ) )
=> ( T @ R ) )
& ! [R: a > $o] :
( ( R
= ( ^ [Xx: a] : ~ $false ) )
=> ( T @ R ) )
& ! [K: ( a > $o ) > $o,R: a > $o] :
( ( ! [Xx: a > $o] :
( ( K @ Xx )
=> ( T @ Xx ) )
& ( R
= ( ^ [Xx: a] :
? [S0: a > $o] :
( ( K @ S0 )
& ( S0 @ Xx ) ) ) ) )
=> ( T @ R ) )
& ! [Y: a > $o,Z: a > $o,S0: a > $o] :
( ( ( T @ Y )
& ( T @ Z )
& ( S0
= ( ^ [Xx: a] :
( ( Y @ Xx )
& ( Z @ Xx ) ) ) ) )
=> ( T @ S0 ) )
& ! [R: b > $o] :
( ( R
= ( ^ [Xx: b] : $false ) )
=> ( S @ R ) )
& ! [R: b > $o] :
( ( R
= ( ^ [Xx: b] : ~ $false ) )
=> ( S @ R ) )
& ! [K: ( b > $o ) > $o,R: b > $o] :
( ( ! [Xx: b > $o] :
( ( K @ Xx )
=> ( S @ Xx ) )
& ( R
= ( ^ [Xx: b] :
? [S0: b > $o] :
( ( K @ S0 )
& ( S0 @ Xx ) ) ) ) )
=> ( S @ R ) )
& ! [Y: b > $o,Z: b > $o,S0: b > $o] :
( ( ( S @ Y )
& ( S @ Z )
& ( S0
= ( ^ [Xx: b] :
( ( Y @ Xx )
& ( Z @ Xx ) ) ) ) )
=> ( S @ S0 ) ) )
=> ! [F: b > a] :
( ! [X: a > $o] :
( ( T @ X )
=> ! [Y: b > $o] :
( ( Y
= ( ^ [Xb: b] : ( X @ ( F @ Xb ) ) ) )
=> ( S @ Y ) ) )
<=> ! [X: b > $o,Xx: a] :
( ? [Xt: b] :
( ! [S0: b > $o] :
( ( ! [Xx0: b] :
( ( X @ Xx0 )
=> ( S0 @ Xx0 ) )
& ! [R: b > $o] :
( ( R
= ( ^ [Xx0: b] :
~ ( S0 @ Xx0 ) ) )
=> ( S @ R ) ) )
=> ( S0 @ Xt ) )
& ( Xx
= ( F @ Xt ) ) )
=> ! [S0: a > $o] :
( ( ! [Xx0: a] :
( ? [Xt: b] :
( ( X @ Xt )
& ( Xx0
= ( F @ Xt ) ) )
=> ( S0 @ Xx0 ) )
& ! [R: a > $o] :
( ( R
= ( ^ [Xx0: a] :
~ ( S0 @ Xx0 ) ) )
=> ( T @ R ) ) )
=> ( S0 @ Xx ) ) ) ) ) ).
%------------------------------------------------------------------------------