TPTP Problem File: SEV270^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV270^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Sets of sets)
% Problem : TPS problem from TOPOLOGY-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1129 [Bro09]
% Status : Unknown
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 3 ( 0 unt; 2 typ; 0 def)
% Number of atoms : 9 ( 1 equ; 0 cnn)
% Maximal formula atoms : 9 ( 9 avg)
% Number of connectives : 51 ( 1 ~; 2 |; 10 &; 26 @)
% ( 0 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 17 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 25 ( 25 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 2 usr; 1 con; 0-2 aty)
% Number of variables : 23 ( 3 ^; 15 !; 5 ?; 23 :)
% SPC : TH0_UNK_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(cL,type,
cL: ( $i > $o ) > $o ).
thf(cG,type,
cG: ( $i > $o ) > $o ).
thf(cTHM628_pme,conjecture,
( ( ! [C: ( $i > $o ) > $o] :
( ( ! [Xx: $i > $o] :
( ( C @ Xx )
=> ( cG @ Xx ) )
& ! [Xx: $i] :
? [Y: $i > $o] :
( ( C @ Y )
& ( Y @ Xx ) ) )
=> ? [D: ( $i > $o ) > $o] :
( ! [Xw: ( ( $i > $o ) > $o ) > $o] :
( ( ( Xw
@ ^ [Xx: $i > $o] : $false )
& ! [Xr: ( $i > $o ) > $o,Xx: $i > $o] :
( ( Xw @ Xr )
=> ( Xw
@ ^ [Xt: $i > $o] :
( ( Xr @ Xt )
| ( Xt = Xx ) ) ) ) )
=> ( Xw @ D ) )
& ! [Xx: $i > $o] :
( ( D @ Xx )
=> ( C @ Xx ) )
& ! [Xx: $i] :
? [Y: $i > $o] :
( ( D @ Y )
& ( Y @ Xx ) ) ) )
& ! [X: $i > $o,Y: $i > $o] :
( ( ( cL @ X )
& ( cL @ Y ) )
=> ( ! [Xx: $i] :
( ( X @ Xx )
=> ( Y @ Xx ) )
| ! [Xx: $i] :
( ( Y @ Xx )
=> ( X @ Xx ) ) ) )
& ! [Y: $i > $o] :
( ( cL @ Y )
=> ? [Xx: $i] : ( Y @ Xx ) )
& ! [Y: $i > $o] :
( ( cL @ Y )
=> ( cG
@ ^ [Xx: $i] :
~ ( Y @ Xx ) ) ) )
=> ? [Xa: $i] :
! [Y: $i > $o] :
( ( cL @ Y )
=> ( Y @ Xa ) ) ) ).
%------------------------------------------------------------------------------