TPTP Problem File: SEV259^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV259^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Sets of sets)
% Problem : TPS problem CLOSURE-THM0
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0339 [Bro09]
% : CLOSURE-THM0 [TPS]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.20 v8.2.0, 0.15 v8.1.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.00 v6.2.0, 0.14 v6.1.0, 0.00 v6.0.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 7 ( 5 equ; 0 cnn)
% Maximal formula atoms : 5 ( 7 avg)
% Number of connectives : 39 ( 2 ~; 0 |; 9 &; 18 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 13 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 15 ( 15 >; 0 *; 0 +; 0 <<)
% Number of symbols : 2 ( 0 usr; 1 con; 0-2 aty)
% Number of variables : 20 ( 5 ^; 14 !; 1 ?; 20 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(b_type,type,
b: $tType ).
thf(cCLOSURE_THM0_pme,conjecture,
! [S: ( b > $o ) > $o] :
( ( ! [R: b > $o] :
( ( R
= ( ^ [Xx: b] : $false ) )
=> ( S @ R ) )
& ! [R: b > $o] :
( ( R
= ( ^ [Xx: b] : ~ $false ) )
=> ( S @ R ) )
& ! [K: ( b > $o ) > $o,R: b > $o] :
( ( ! [Xx: b > $o] :
( ( K @ Xx )
=> ( S @ Xx ) )
& ( R
= ( ^ [Xx: b] :
? [S0: b > $o] :
( ( K @ S0 )
& ( S0 @ Xx ) ) ) ) )
=> ( S @ R ) )
& ! [Y: b > $o,Z: b > $o,S0: b > $o] :
( ( ( S @ Y )
& ( S @ Z )
& ( S0
= ( ^ [Xx: b] :
( ( Y @ Xx )
& ( Z @ Xx ) ) ) ) )
=> ( S @ S0 ) ) )
=> ! [W: b > $o,Xx: b] :
( ( W @ Xx )
=> ! [S0: b > $o] :
( ( ! [Xx0: b] :
( ( W @ Xx0 )
=> ( S0 @ Xx0 ) )
& ! [R: b > $o] :
( ( R
= ( ^ [Xx0: b] :
~ ( S0 @ Xx0 ) ) )
=> ( S @ R ) ) )
=> ( S0 @ Xx ) ) ) ) ).
%------------------------------------------------------------------------------