TPTP Problem File: SEV214^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV214^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Sets of sets)
% Problem : TPS problem from S-T-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1094 [Bro09]
% Status : Theorem
% Rating : 0.00 v9.0.0, 0.10 v8.2.0, 0.15 v8.1.0, 0.09 v7.5.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.12 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.40 v5.3.0, 0.60 v5.2.0, 0.80 v5.1.0, 1.00 v5.0.0, 0.80 v4.1.0, 0.67 v4.0.0
% Syntax : Number of formulae : 4 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 12 ( 12 equ; 0 cnn)
% Maximal formula atoms : 6 ( 12 avg)
% Number of connectives : 32 ( 1 ~; 2 |; 6 &; 19 @)
% ( 0 <=>; 4 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 13 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 3 ( 3 >; 0 *; 0 +; 0 <<)
% Number of symbols : 3 ( 2 usr; 1 con; 0-2 aty)
% Number of variables : 18 ( 6 ^; 10 !; 2 ?; 18 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(iS_type,type,
iS: $tType ).
thf(c0,type,
c0: iS ).
thf(cP,type,
cP: iS > iS > iS ).
thf(cS_T_LR_LEM2_pme,conjecture,
( ( ! [Xx: iS,Xy: iS] :
( ( cP @ Xx @ Xy )
!= c0 )
& ! [Xx: iS,Xy: iS,Xu: iS,Xv: iS] :
( ( ( cP @ Xx @ Xu )
= ( cP @ Xy @ Xv ) )
=> ( ( Xx = Xy )
& ( Xu = Xv ) ) )
& ! [X: iS > $o] :
( ( ( X @ c0 )
& ! [Xx: iS,Xy: iS] :
( ( ( X @ Xx )
& ( X @ Xy ) )
=> ( X @ ( cP @ Xx @ Xy ) ) ) )
=> ! [Xx: iS] : ( X @ Xx ) ) )
=> ( ( ( ^ [Xx: iS] :
( ( Xx = c0 )
| ? [Xy: iS] :
( c0
= ( cP @ Xx @ Xy ) ) ) )
= ( ^ [Xx: iS,Xy: iS] : ( Xx = Xy )
@ c0 ) )
& ( ( ^ [Xy: iS] :
( ( Xy = c0 )
| ? [Xx: iS] :
( c0
= ( cP @ Xx @ Xy ) ) ) )
= ( ^ [Xx: iS,Xy: iS] : ( Xx = Xy )
@ c0 ) ) ) ) ).
%------------------------------------------------------------------------------