TPTP Problem File: SEV209^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV209^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Sets of sets)
% Problem : TPS problem from S-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1218 [Bro09]
% Status : Unknown
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 4 ( 1 unt; 3 typ; 0 def)
% Number of atoms : 32 ( 29 equ; 0 cnn)
% Maximal formula atoms : 1 ( 32 avg)
% Number of connectives : 101 ( 0 ~; 8 |; 27 &; 60 @)
% ( 0 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 1 ( 1 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 11 ( 11 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 2 usr; 2 con; 0-2 aty)
% Number of variables : 42 ( 6 ^; 12 !; 24 ?; 42 :)
% SPC : TH0_UNK_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cP,type,
cP: a > a > a ).
thf(c0,type,
c0: a ).
thf(cS_JOIN_FPPROP_pme,conjecture,
( ( ^ [Xa: a,Xb: a,Xc: a] :
! [R: a > a > a > $o] :
( ( $true
& ! [Xa0: a,Xb0: a,Xc0: a] :
( ( ( ( Xa0 = c0 )
& ( Xb0 = Xc0 ) )
| ( ( Xb0 = c0 )
& ( Xa0 = Xc0 ) )
| ? [Xx1: a,Xx2: a,Xy1: a,Xy2: a,Xz1: a,Xz2: a] :
( ( Xa0
= ( cP @ Xx1 @ Xx2 ) )
& ( Xb0
= ( cP @ Xy1 @ Xy2 ) )
& ( Xc0
= ( cP @ Xz1 @ Xz2 ) )
& ( R @ Xx1 @ Xy1 @ Xz1 )
& ( R @ Xx2 @ Xy2 @ Xz2 ) ) )
=> ( R @ Xa0 @ Xb0 @ Xc0 ) ) )
=> ( R @ Xa @ Xb @ Xc ) ) )
= ( ^ [Xx: a,Xy: a,Xz: a] :
( ( ( Xx = c0 )
& ( Xy = Xz ) )
| ( ( Xy = c0 )
& ( Xx = Xz ) )
| ? [Xx1: a,Xx2: a,Xy1: a,Xy2: a,Xz1: a,Xz2: a] :
( ( Xx
= ( cP @ Xx1 @ Xx2 ) )
& ( Xy
= ( cP @ Xy1 @ Xy2 ) )
& ( Xz
= ( cP @ Xz1 @ Xz2 ) )
& ! [R: a > a > a > $o] :
( ( $true
& ! [Xa: a,Xb: a,Xc: a] :
( ( ( ( Xa = c0 )
& ( Xb = Xc ) )
| ( ( Xb = c0 )
& ( Xa = Xc ) )
| ? [Xx10: a,Xx20: a,Xy10: a,Xy20: a,Xz10: a,Xz20: a] :
( ( Xa
= ( cP @ Xx10 @ Xx20 ) )
& ( Xb
= ( cP @ Xy10 @ Xy20 ) )
& ( Xc
= ( cP @ Xz10 @ Xz20 ) )
& ( R @ Xx10 @ Xy10 @ Xz10 )
& ( R @ Xx20 @ Xy20 @ Xz20 ) ) )
=> ( R @ Xa @ Xb @ Xc ) ) )
=> ( R @ Xx1 @ Xy1 @ Xz1 ) )
& ! [R: a > a > a > $o] :
( ( $true
& ! [Xa: a,Xb: a,Xc: a] :
( ( ( ( Xa = c0 )
& ( Xb = Xc ) )
| ( ( Xb = c0 )
& ( Xa = Xc ) )
| ? [Xx10: a,Xx20: a,Xy10: a,Xy20: a,Xz10: a,Xz20: a] :
( ( Xa
= ( cP @ Xx10 @ Xx20 ) )
& ( Xb
= ( cP @ Xy10 @ Xy20 ) )
& ( Xc
= ( cP @ Xz10 @ Xz20 ) )
& ( R @ Xx10 @ Xy10 @ Xz10 )
& ( R @ Xx20 @ Xy20 @ Xz20 ) ) )
=> ( R @ Xa @ Xb @ Xc ) ) )
=> ( R @ Xx2 @ Xy2 @ Xz2 ) ) ) ) ) ) ).
%------------------------------------------------------------------------------