TPTP Problem File: SEV205^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV205^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Sets of sets)
% Problem : TPS problem from S-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1158 [Bro09]
% Status : Theorem
% Rating : 1.00 v8.2.0, 0.92 v8.1.0, 1.00 v4.0.0
% Syntax : Number of formulae : 7 ( 0 unt; 6 typ; 0 def)
% Number of atoms : 13 ( 13 equ; 0 cnn)
% Maximal formula atoms : 13 ( 13 avg)
% Number of connectives : 54 ( 2 ~; 0 |; 11 &; 35 @)
% ( 0 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 14 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 2 con; 0-2 aty)
% Number of variables : 22 ( 0 ^; 21 !; 1 ?; 22 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(b_type,type,
b: $tType ).
thf(iS_type,type,
iS: $tType ).
thf(cP2,type,
cP2: b > b > b ).
thf(cP,type,
cP: iS > iS > iS ).
thf(c02,type,
c02: b ).
thf(c0,type,
c0: iS ).
thf(cTHM_S_INIT_pme,conjecture,
( ( ! [Xx: iS,Xy: iS] :
( ( cP @ Xx @ Xy )
!= c0 )
& ! [Xx: iS,Xy: iS,Xu: iS,Xv: iS] :
( ( ( cP @ Xx @ Xu )
= ( cP @ Xy @ Xv ) )
=> ( ( Xx = Xy )
& ( Xu = Xv ) ) )
& ! [X: iS > $o] :
( ( ( X @ c0 )
& ! [Xx: iS,Xy: iS] :
( ( ( X @ Xx )
& ( X @ Xy ) )
=> ( X @ ( cP @ Xx @ Xy ) ) ) )
=> ! [Xx: iS] : ( X @ Xx ) )
& ! [Xx: b,Xy: b,Xu: b,Xv: b] :
( ( ( cP2 @ Xx @ Xu )
= ( cP2 @ Xy @ Xv ) )
=> ( ( Xx = Xy )
& ( Xu = Xv ) ) )
& ! [Xx: b,Xy: b] :
( ( cP2 @ Xx @ Xy )
!= c02 ) )
=> ? [Xf: iS > b] :
( ( ( Xf @ c0 )
= c02 )
& ! [Xx: iS,Xy: iS] :
( ( Xf @ ( cP @ Xx @ Xy ) )
= ( cP2 @ ( Xf @ Xx ) @ ( Xf @ Xy ) ) )
& ! [Xg: iS > b] :
( ( ( ( Xg @ c0 )
= c02 )
& ! [Xx: iS,Xy: iS] :
( ( Xg @ ( cP @ Xx @ Xy ) )
= ( cP2 @ ( Xg @ Xx ) @ ( Xg @ Xy ) ) ) )
=> ( Xf = Xg ) ) ) ) ).
%------------------------------------------------------------------------------