TPTP Problem File: SEV200^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV200^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Sets of sets)
% Problem : TPS problem from S-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1145 [Bro09]
% Status : Theorem
% Rating : 0.00 v6.2.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0
% Syntax : Number of formulae : 5 ( 0 unt; 4 typ; 0 def)
% Number of atoms : 12 ( 11 equ; 0 cnn)
% Maximal formula atoms : 12 ( 12 avg)
% Number of connectives : 52 ( 1 ~; 2 |; 12 &; 31 @)
% ( 0 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 24 ( 24 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 3 usr; 3 con; 0-2 aty)
% Number of variables : 20 ( 0 ^; 14 !; 6 ?; 20 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(x,type,
x: a ).
thf(cZ,type,
cZ: a ).
thf(cP,type,
cP: a > a > a ).
thf(cS_LEM1C_pme,conjecture,
( ( ! [Xx0: a,Xy: a] :
( ( cP @ Xx0 @ Xy )
!= cZ )
& ! [Xx0: a,Xy: a,Xu: a,Xv: a] :
( ( ( cP @ Xx0 @ Xu )
= ( cP @ Xy @ Xv ) )
=> ( ( Xx0 = Xy )
& ( Xu = Xv ) ) )
& ! [X: a > $o] :
( ( ( X @ cZ )
& ! [Xx0: a,Xy: a] :
( ( ( X @ Xx0 )
& ( X @ Xy ) )
=> ( X @ ( cP @ Xx0 @ Xy ) ) ) )
=> ! [Xx0: a] : ( X @ Xx0 ) ) )
=> ! [R: a > a > a > $o] :
( ( $true
& ! [Xa: a,Xb: a,Xc: a] :
( ( ( ( Xa = cZ )
& ( Xb = Xc ) )
| ( ( Xb = cZ )
& ( Xa = Xc ) )
| ? [Xx1: a,Xx2: a,Xy1: a,Xy2: a,Xz1: a,Xz2: a] :
( ( Xa
= ( cP @ Xx1 @ Xx2 ) )
& ( Xb
= ( cP @ Xy1 @ Xy2 ) )
& ( Xc
= ( cP @ Xz1 @ Xz2 ) )
& ( R @ Xx1 @ Xy1 @ Xz1 )
& ( R @ Xx2 @ Xy2 @ Xz2 ) ) )
=> ( R @ Xa @ Xb @ Xc ) ) )
=> ( R @ cZ @ x @ x ) ) ) ).
%------------------------------------------------------------------------------