TPTP Problem File: SEV184^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV184^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Sets of sets)
% Problem : TPS problem from SET-TOP-CAT-ACS-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1249 [Bro09]
% Status : Unknown
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 5 ( 0 unt; 4 typ; 0 def)
% Number of atoms : 40 ( 16 equ; 0 cnn)
% Maximal formula atoms : 40 ( 40 avg)
% Number of connectives : 245 ( 0 ~; 8 |; 52 &; 123 @)
% ( 8 <=>; 54 =>; 0 <=; 0 <~>)
% Maximal formula depth : 30 ( 30 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 152 ( 152 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 2 usr; 1 con; 0-2 aty)
% Number of variables : 116 ( 20 ^; 71 !; 25 ?; 116 :)
% SPC : TH0_UNK_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(b_type,type,
b: $tType ).
thf(a_type,type,
a: $tType ).
thf(cB,type,
cB: ( b > $o ) > $o ).
thf(cA,type,
cA: ( a > $o ) > $o ).
thf(cDOMTHM16_pme,conjecture,
( ( ! [X: ( a > $o ) > $o] :
( ! [Xx: a > $o] :
( ( X @ Xx )
=> ( cA @ Xx ) )
=> ( cA
@ ^ [Xx: a] :
! [S: a > $o] :
( ( X @ S )
=> ( S @ Xx ) ) ) )
& ! [D: ( a > $o ) > $o] :
( ( ! [Xx: a > $o] :
( ( D @ Xx )
=> ( cA @ Xx ) )
& ? [Xy: a > $o] : ( D @ Xy )
& ! [Xy: a > $o,Xz: a > $o] :
? [Xw: a > $o] :
( ! [Xx: a] :
( ( Xy @ Xx )
=> ( Xw @ Xx ) )
& ! [Xx: a] :
( ( Xz @ Xx )
=> ( Xw @ Xx ) ) ) )
=> ( cA
@ ^ [Xx: a] :
? [S: a > $o] :
( ( D @ S )
& ( S @ Xx ) ) ) )
& ! [X: ( b > $o ) > $o] :
( ! [Xx: b > $o] :
( ( X @ Xx )
=> ( cB @ Xx ) )
=> ( cB
@ ^ [Xx: b] :
! [S: b > $o] :
( ( X @ S )
=> ( S @ Xx ) ) ) )
& ! [D: ( b > $o ) > $o] :
( ( ! [Xx: b > $o] :
( ( D @ Xx )
=> ( cB @ Xx ) )
& ? [Xy: b > $o] : ( D @ Xy )
& ! [Xy: b > $o,Xz: b > $o] :
? [Xw: b > $o] :
( ! [Xx: b] :
( ( Xy @ Xx )
=> ( Xw @ Xx ) )
& ! [Xx: b] :
( ( Xz @ Xx )
=> ( Xw @ Xx ) ) ) )
=> ( cB
@ ^ [Xx: b] :
? [S: b > $o] :
( ( D @ S )
& ( S @ Xx ) ) ) ) )
=> ( ! [X: ( ( ( a > $o ) > ( b > $o ) > $o ) > $o ) > $o] :
( ! [Xx: ( ( a > $o ) > ( b > $o ) > $o ) > $o] :
( ( X @ Xx )
=> ? [Xx0: a > $o] :
( ( cA @ Xx0 )
& ? [Xy: b > $o] :
( ( cB @ Xy )
& ! [Xr: ( a > $o ) > ( b > $o ) > $o] :
( ( Xx @ Xr )
<=> ? [Xd: a > $o,Xe: b > $o] :
( ! [X0: ( a > $o ) > $o] :
( ( ( X0
@ ^ [Xy0: a] : $false )
& ! [Xx1: a > $o] :
( ( X0 @ Xx1 )
=> ! [Xt: a] :
( ( Xd @ Xt )
=> ( X0
@ ^ [Xz: a] :
( ( Xx1 @ Xz )
| ( Xt = Xz ) ) ) ) ) )
=> ( X0 @ Xd ) )
& ! [Xx1: a] :
( ( Xd @ Xx1 )
=> ( Xx0 @ Xx1 ) )
& ! [X0: ( b > $o ) > $o] :
( ( ( X0
@ ^ [Xy0: b] : $false )
& ! [Xx1: b > $o] :
( ( X0 @ Xx1 )
=> ! [Xt: b] :
( ( Xe @ Xt )
=> ( X0
@ ^ [Xz: b] :
( ( Xx1 @ Xz )
| ( Xt = Xz ) ) ) ) ) )
=> ( X0 @ Xe ) )
& ! [Xx1: b] :
( ( Xe @ Xx1 )
=> ( Xy @ Xx1 ) )
& ! [Xu: a > $o,Xv: b > $o] :
( ( Xr @ Xu @ Xv )
<=> ( ( Xd = Xu )
& ( Xe = Xv ) ) ) ) ) ) ) )
=> ? [Xx: a > $o] :
( ( cA @ Xx )
& ? [Xy: b > $o] :
( ( cB @ Xy )
& ! [Xr: ( a > $o ) > ( b > $o ) > $o] :
( ! [S: ( ( a > $o ) > ( b > $o ) > $o ) > $o] :
( ( X @ S )
=> ( S @ Xr ) )
<=> ? [Xd: a > $o,Xe: b > $o] :
( ! [X0: ( a > $o ) > $o] :
( ( ( X0
@ ^ [Xy0: a] : $false )
& ! [Xx0: a > $o] :
( ( X0 @ Xx0 )
=> ! [Xt: a] :
( ( Xd @ Xt )
=> ( X0
@ ^ [Xz: a] :
( ( Xx0 @ Xz )
| ( Xt = Xz ) ) ) ) ) )
=> ( X0 @ Xd ) )
& ! [Xx0: a] :
( ( Xd @ Xx0 )
=> ( Xx @ Xx0 ) )
& ! [X0: ( b > $o ) > $o] :
( ( ( X0
@ ^ [Xy0: b] : $false )
& ! [Xx0: b > $o] :
( ( X0 @ Xx0 )
=> ! [Xt: b] :
( ( Xe @ Xt )
=> ( X0
@ ^ [Xz: b] :
( ( Xx0 @ Xz )
| ( Xt = Xz ) ) ) ) ) )
=> ( X0 @ Xe ) )
& ! [Xx0: b] :
( ( Xe @ Xx0 )
=> ( Xy @ Xx0 ) )
& ! [Xu: a > $o,Xv: b > $o] :
( ( Xr @ Xu @ Xv )
<=> ( ( Xd = Xu )
& ( Xe = Xv ) ) ) ) ) ) ) )
& ! [D: ( ( ( a > $o ) > ( b > $o ) > $o ) > $o ) > $o] :
( ( ! [Xx: ( ( a > $o ) > ( b > $o ) > $o ) > $o] :
( ( D @ Xx )
=> ? [Xx0: a > $o] :
( ( cA @ Xx0 )
& ? [Xy: b > $o] :
( ( cB @ Xy )
& ! [Xr: ( a > $o ) > ( b > $o ) > $o] :
( ( Xx @ Xr )
<=> ? [Xd: a > $o,Xe: b > $o] :
( ! [X: ( a > $o ) > $o] :
( ( ( X
@ ^ [Xy0: a] : $false )
& ! [Xx1: a > $o] :
( ( X @ Xx1 )
=> ! [Xt: a] :
( ( Xd @ Xt )
=> ( X
@ ^ [Xz: a] :
( ( Xx1 @ Xz )
| ( Xt = Xz ) ) ) ) ) )
=> ( X @ Xd ) )
& ! [Xx1: a] :
( ( Xd @ Xx1 )
=> ( Xx0 @ Xx1 ) )
& ! [X: ( b > $o ) > $o] :
( ( ( X
@ ^ [Xy0: b] : $false )
& ! [Xx1: b > $o] :
( ( X @ Xx1 )
=> ! [Xt: b] :
( ( Xe @ Xt )
=> ( X
@ ^ [Xz: b] :
( ( Xx1 @ Xz )
| ( Xt = Xz ) ) ) ) ) )
=> ( X @ Xe ) )
& ! [Xx1: b] :
( ( Xe @ Xx1 )
=> ( Xy @ Xx1 ) )
& ! [Xu: a > $o,Xv: b > $o] :
( ( Xr @ Xu @ Xv )
<=> ( ( Xd = Xu )
& ( Xe = Xv ) ) ) ) ) ) ) )
& ? [Xy: ( ( a > $o ) > ( b > $o ) > $o ) > $o] : ( D @ Xy )
& ! [Xy: ( ( a > $o ) > ( b > $o ) > $o ) > $o,Xz: ( ( a > $o ) > ( b > $o ) > $o ) > $o] :
? [Xw: ( ( a > $o ) > ( b > $o ) > $o ) > $o] :
( ! [Xx: ( a > $o ) > ( b > $o ) > $o] :
( ( Xy @ Xx )
=> ( Xw @ Xx ) )
& ! [Xx: ( a > $o ) > ( b > $o ) > $o] :
( ( Xz @ Xx )
=> ( Xw @ Xx ) ) ) )
=> ? [Xx: a > $o] :
( ( cA @ Xx )
& ? [Xy: b > $o] :
( ( cB @ Xy )
& ! [Xr: ( a > $o ) > ( b > $o ) > $o] :
( ? [S: ( ( a > $o ) > ( b > $o ) > $o ) > $o] :
( ( D @ S )
& ( S @ Xr ) )
<=> ? [Xd: a > $o,Xe: b > $o] :
( ! [X: ( a > $o ) > $o] :
( ( ( X
@ ^ [Xy0: a] : $false )
& ! [Xx0: a > $o] :
( ( X @ Xx0 )
=> ! [Xt: a] :
( ( Xd @ Xt )
=> ( X
@ ^ [Xz: a] :
( ( Xx0 @ Xz )
| ( Xt = Xz ) ) ) ) ) )
=> ( X @ Xd ) )
& ! [Xx0: a] :
( ( Xd @ Xx0 )
=> ( Xx @ Xx0 ) )
& ! [X: ( b > $o ) > $o] :
( ( ( X
@ ^ [Xy0: b] : $false )
& ! [Xx0: b > $o] :
( ( X @ Xx0 )
=> ! [Xt: b] :
( ( Xe @ Xt )
=> ( X
@ ^ [Xz: b] :
( ( Xx0 @ Xz )
| ( Xt = Xz ) ) ) ) ) )
=> ( X @ Xe ) )
& ! [Xx0: b] :
( ( Xe @ Xx0 )
=> ( Xy @ Xx0 ) )
& ! [Xu: a > $o,Xv: b > $o] :
( ( Xr @ Xu @ Xv )
<=> ( ( Xd = Xu )
& ( Xe = Xv ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------