TPTP Problem File: SEV146^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV146^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem from TRANSITIVE-CLOSURE
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1133 [Bro09]
% Status : Theorem
% Rating : 0.00 v8.1.0, 0.08 v7.4.0, 0.00 v7.3.0, 0.10 v7.2.0, 0.00 v6.2.0, 0.17 v6.0.0, 0.00 v5.1.0, 0.25 v5.0.0, 0.00 v4.1.0, 0.33 v4.0.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 0 ( 0 equ; 0 cnn)
% Maximal formula atoms : 0 ( 0 avg)
% Number of connectives : 58 ( 0 ~; 0 |; 10 &; 34 @)
% ( 0 <=>; 14 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 17 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 6 ( 6 >; 0 *; 0 +; 0 <<)
% Number of symbols : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 22 ( 0 ^; 22 !; 0 ?; 22 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cTHM525_pme,conjecture,
! [Xr: a > a > $o] :
( ! [Xx: a,Xy: a] :
( ( Xr @ Xx @ Xy )
=> ! [Xq: a > $o] :
( ( ! [Xw: a] :
( ( Xr @ Xx @ Xw )
=> ( Xq @ Xw ) )
& ! [Xv: a,Xw: a] :
( ( ( Xq @ Xv )
& ( Xr @ Xv @ Xw ) )
=> ( Xq @ Xw ) ) )
=> ( Xq @ Xy ) ) )
& ! [Xx: a,Xy: a,Xz: a] :
( ( ! [Xq: a > $o] :
( ( ! [Xw: a] :
( ( Xr @ Xx @ Xw )
=> ( Xq @ Xw ) )
& ! [Xv: a,Xw: a] :
( ( ( Xq @ Xv )
& ( Xr @ Xv @ Xw ) )
=> ( Xq @ Xw ) ) )
=> ( Xq @ Xy ) )
& ! [Xq: a > $o] :
( ( ! [Xw: a] :
( ( Xr @ Xy @ Xw )
=> ( Xq @ Xw ) )
& ! [Xv: a,Xw: a] :
( ( ( Xq @ Xv )
& ( Xr @ Xv @ Xw ) )
=> ( Xq @ Xw ) ) )
=> ( Xq @ Xz ) ) )
=> ! [Xq: a > $o] :
( ( ! [Xw: a] :
( ( Xr @ Xx @ Xw )
=> ( Xq @ Xw ) )
& ! [Xv: a,Xw: a] :
( ( ( Xq @ Xv )
& ( Xr @ Xv @ Xw ) )
=> ( Xq @ Xw ) ) )
=> ( Xq @ Xz ) ) ) ) ).
%------------------------------------------------------------------------------