TPTP Problem File: SEV130^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV130^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem from SETS-OF-RELNS-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1142 [Bro09]
% Status : Theorem
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 2 ( 1 unt; 1 typ; 0 def)
% Number of atoms : 2 ( 2 equ; 0 cnn)
% Maximal formula atoms : 1 ( 2 avg)
% Number of connectives : 56 ( 0 ~; 0 |; 9 &; 38 @)
% ( 0 <=>; 9 =>; 0 <=; 0 <~>)
% Maximal formula depth : 2 ( 2 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 15 ( 15 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 0 usr; 0 con; 2-2 aty)
% Number of variables : 28 ( 6 ^; 19 !; 3 ?; 28 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cTHM253_pme,conjecture,
! [S: ( a > a > $o ) > $o] :
( ( ^ [Xx1: a,Xy1: a] :
! [Xp1: a > a > $o] :
( ( ! [Xx: a,Xy: a] :
( ? [R: a > a > $o] :
( ( S @ R )
& ( R @ Xx @ Xy ) )
=> ( Xp1 @ Xx @ Xy ) )
& ! [Xx: a,Xy: a,Xz: a] :
( ( ( Xp1 @ Xx @ Xy )
& ( Xp1 @ Xy @ Xz ) )
=> ( Xp1 @ Xx @ Xz ) ) )
=> ( Xp1 @ Xx1 @ Xy1 ) ) )
= ( ^ [Xx1: a,Xy1: a] :
! [Xp1: a > a > $o] :
( ( ! [Xx: a,Xy: a] :
( ? [R: a > a > $o] :
( ? [Q: a > a > $o] :
( ( S @ Q )
& ( R
= ( ^ [Xx10: a,Xy10: a] :
! [Xp10: a > a > $o] :
( ( ! [Xx0: a,Xy0: a] :
( ( Q @ Xx0 @ Xy0 )
=> ( Xp10 @ Xx0 @ Xy0 ) )
& ! [Xx0: a,Xy0: a,Xz: a] :
( ( ( Xp10 @ Xx0 @ Xy0 )
& ( Xp10 @ Xy0 @ Xz ) )
=> ( Xp10 @ Xx0 @ Xz ) ) )
=> ( Xp10 @ Xx10 @ Xy10 ) ) ) ) )
& ( R @ Xx @ Xy ) )
=> ( Xp1 @ Xx @ Xy ) )
& ! [Xx: a,Xy: a,Xz: a] :
( ( ( Xp1 @ Xx @ Xy )
& ( Xp1 @ Xy @ Xz ) )
=> ( Xp1 @ Xx @ Xz ) ) )
=> ( Xp1 @ Xx1 @ Xy1 ) ) ) ) ).
%------------------------------------------------------------------------------