TPTP Problem File: SEV115^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV115^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem from RELN-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1193 [Bro09]
% Status : Unknown
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 2 ( 1 unt; 1 typ; 0 def)
% Number of atoms : 1 ( 1 equ; 0 cnn)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 86 ( 0 ~; 4 |; 14 &; 48 @)
% ( 0 <=>; 20 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 17 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 34 ( 34 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 0 usr; 0 con; 2-2 aty)
% Number of variables : 30 ( 0 ^; 28 !; 2 ?; 30 :)
% SPC : TH0_UNK_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cTHM536_pme,conjecture,
( ! [R: ( a > $o ) > ( a > $o ) > $o] :
( ( ! [Xx: a > $o,Xy: a > $o,Xz: a > $o] :
( ( ( R @ Xx @ Xy )
& ( R @ Xy @ Xz ) )
=> ( R @ Xx @ Xz ) )
& ! [Xx: a > $o] : ( R @ Xx @ Xx )
& ! [Xx: a > $o,Xy: a > $o] :
( ( ( R @ Xx @ Xy )
& ( R @ Xy @ Xx ) )
=> ( Xx = Xy ) ) )
=> ? [S: ( a > $o ) > $o] :
( ! [Xx: a > $o,Xy: a > $o] :
( ( ( S @ Xx )
& ( S @ Xy ) )
=> ( ( R @ Xx @ Xy )
| ( R @ Xy @ Xx ) ) )
& ! [Xy: ( a > $o ) > $o] :
( ( ! [Xx: a > $o,Xy0: a > $o] :
( ( ( Xy @ Xx )
& ( Xy @ Xy0 ) )
=> ( ( R @ Xx @ Xy0 )
| ( R @ Xy0 @ Xx ) ) )
& ! [Xx: a > $o] :
( ( S @ Xx )
=> ( Xy @ Xx ) ) )
=> ! [Xx: a > $o] :
( ( Xy @ Xx )
=> ( S @ Xx ) ) ) ) )
=> ! [X2: ( a > $o ) > $o] :
? [M: ( a > $o ) > $o] :
( ! [Xx: a > $o] :
( ( M @ Xx )
=> ( X2 @ Xx ) )
& ! [U: a > $o,V: a > $o] :
( ( ( M @ U )
& ( M @ V ) )
=> ( ! [Xx: a] :
( ( U @ Xx )
=> ( V @ Xx ) )
| ! [Xx: a] :
( ( V @ Xx )
=> ( U @ Xx ) ) ) )
& ! [Xy: ( a > $o ) > $o] :
( ( ! [Xx: a > $o] :
( ( Xy @ Xx )
=> ( X2 @ Xx ) )
& ! [U: a > $o,V: a > $o] :
( ( ( Xy @ U )
& ( Xy @ V ) )
=> ( ! [Xx: a] :
( ( U @ Xx )
=> ( V @ Xx ) )
| ! [Xx: a] :
( ( V @ Xx )
=> ( U @ Xx ) ) ) )
& ! [Xx: a > $o] :
( ( M @ Xx )
=> ( Xy @ Xx ) ) )
=> ! [Xx: a > $o] :
( ( Xy @ Xx )
=> ( M @ Xx ) ) ) ) ) ).
%------------------------------------------------------------------------------