TPTP Problem File: SEV109^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV109^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem from RELN-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1164 [Bro09]
% : tps_1165 [Bro09]
% : tps_1166 [Bro09]
% : tps_1167 [Bro09]
% : tps_0501 [Bro09]
% : THM250B [TPS]
% Status : Theorem
% Rating : 0.00 v8.1.0, 0.08 v7.4.0, 0.00 v6.2.0, 0.17 v6.0.0, 0.00 v5.1.0, 0.25 v5.0.0, 0.00 v4.1.0, 0.33 v4.0.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 0 ( 0 equ; 0 cnn)
% Maximal formula atoms : 0 ( 0 avg)
% Number of connectives : 71 ( 0 ~; 2 |; 8 &; 48 @)
% ( 0 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 23 ( 23 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 12 ( 12 >; 0 *; 0 +; 0 <<)
% Number of symbols : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 28 ( 0 ^; 28 !; 0 ?; 28 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cTHM251F_pme,conjecture,
! [R: a > a > $o,S: a > a > $o,Xx: a,Xy: a] :
( ! [Xq1: a > a > $o] :
( ( ! [Xs: a,Xt: a] :
( ( ( R @ Xs @ Xt )
| ( S @ Xs @ Xt ) )
=> ( Xq1 @ Xs @ Xt ) )
& ! [Xx0: a,Xy0: a,Xz: a] :
( ( ( Xq1 @ Xx0 @ Xy0 )
& ( Xq1 @ Xy0 @ Xz ) )
=> ( Xq1 @ Xx0 @ Xz ) ) )
=> ( Xq1 @ Xx @ Xy ) )
=> ! [Xp1: a > a > $o] :
( ( ! [Xss: a,Xtt: a] :
( ( ! [Xq2: a > a > $o] :
( ( ! [Xsss: a,Xttt: a] :
( ( R @ Xsss @ Xttt )
=> ( Xq2 @ Xsss @ Xttt ) )
& ! [Xx0: a,Xy0: a,Xz: a] :
( ( ( Xq2 @ Xx0 @ Xy0 )
& ( Xq2 @ Xy0 @ Xz ) )
=> ( Xq2 @ Xx0 @ Xz ) ) )
=> ( Xq2 @ Xss @ Xtt ) )
| ! [Xq3: a > a > $o] :
( ( ! [Xssss: a,Xtttt: a] :
( ( S @ Xssss @ Xtttt )
=> ( Xq3 @ Xssss @ Xtttt ) )
& ! [Xx0: a,Xy0: a,Xz: a] :
( ( ( Xq3 @ Xx0 @ Xy0 )
& ( Xq3 @ Xy0 @ Xz ) )
=> ( Xq3 @ Xx0 @ Xz ) ) )
=> ( Xq3 @ Xss @ Xtt ) ) )
=> ( Xp1 @ Xss @ Xtt ) )
& ! [Xx0: a,Xy0: a,Xz: a] :
( ( ( Xp1 @ Xx0 @ Xy0 )
& ( Xp1 @ Xy0 @ Xz ) )
=> ( Xp1 @ Xx0 @ Xz ) ) )
=> ( Xp1 @ Xx @ Xy ) ) ) ).
%------------------------------------------------------------------------------