TPTP Problem File: SEV063^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV063^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem THM136
% Version : Especial.
% English : The transitive closure of a relation is transitive.
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0372 [Bro09]
% : THM136 [TPS]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.08 v8.2.0, 0.09 v8.1.0, 0.17 v7.4.0, 0.11 v7.3.0, 0.20 v7.2.0, 0.12 v7.1.0, 0.14 v7.0.0, 0.12 v6.4.0, 0.14 v6.3.0, 0.17 v6.0.0, 0.00 v5.2.0, 0.25 v5.1.0, 0.50 v5.0.0, 0.00 v4.1.0, 0.33 v4.0.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 0 ( 0 equ; 0 cnn)
% Maximal formula atoms : 0 ( 0 avg)
% Number of connectives : 53 ( 0 ~; 0 |; 7 &; 36 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 17 ( 17 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 8 ( 8 >; 0 *; 0 +; 0 <<)
% Number of symbols : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 22 ( 0 ^; 22 !; 0 ?; 22 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cTHM136_pme,conjecture,
! [Xr: a > a > $o,Xx: a,Xy: a,Xz: a] :
( ( ! [Xp: a > a > $o] :
( ( ! [Xx0: a,Xy0: a] :
( ( Xr @ Xx0 @ Xy0 )
=> ( Xp @ Xx0 @ Xy0 ) )
& ! [Xx0: a,Xy0: a,Xz0: a] :
( ( ( Xp @ Xx0 @ Xy0 )
& ( Xp @ Xy0 @ Xz0 ) )
=> ( Xp @ Xx0 @ Xz0 ) ) )
=> ( Xp @ Xx @ Xy ) )
& ! [Xp: a > a > $o] :
( ( ! [Xx0: a,Xy0: a] :
( ( Xr @ Xx0 @ Xy0 )
=> ( Xp @ Xx0 @ Xy0 ) )
& ! [Xx0: a,Xy0: a,Xz0: a] :
( ( ( Xp @ Xx0 @ Xy0 )
& ( Xp @ Xy0 @ Xz0 ) )
=> ( Xp @ Xx0 @ Xz0 ) ) )
=> ( Xp @ Xy @ Xz ) ) )
=> ! [Xp: a > a > $o] :
( ( ! [Xx0: a,Xy0: a] :
( ( Xr @ Xx0 @ Xy0 )
=> ( Xp @ Xx0 @ Xy0 ) )
& ! [Xx0: a,Xy0: a,Xz0: a] :
( ( ( Xp @ Xx0 @ Xy0 )
& ( Xp @ Xy0 @ Xz0 ) )
=> ( Xp @ Xx0 @ Xz0 ) ) )
=> ( Xp @ Xx @ Xz ) ) ) ).
%------------------------------------------------------------------------------