TPTP Problem File: SEV046^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV046^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem from PERS-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1181 [Bro09]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.15 v8.1.0, 0.18 v7.5.0, 0.14 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.40 v5.1.0, 0.60 v4.1.0, 0.33 v4.0.1, 1.00 v4.0.0
% Syntax : Number of formulae : 3 ( 1 unt; 2 typ; 0 def)
% Number of atoms : 1 ( 1 equ; 0 cnn)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 88 ( 0 ~; 0 |; 8 &; 66 @)
% ( 0 <=>; 14 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 18 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 10 ( 10 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 0 usr; 0 con; 2-2 aty)
% Number of variables : 30 ( 0 ^; 30 !; 0 ?; 30 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(b_type,type,
b: $tType ).
thf(cTHM507_pme,conjecture,
! [Xp: a > a > $o,Xp2: a > b > b > $o] :
( ( ! [Xx: a,Xy: a] :
( ( Xp @ Xx @ Xy )
=> ( Xp @ Xy @ Xx ) )
& ! [Xx: a,Xy: a,Xz: a] :
( ( ( Xp @ Xx @ Xy )
& ( Xp @ Xy @ Xz ) )
=> ( Xp @ Xx @ Xz ) )
& ! [Xx: a] :
( ( Xp @ Xx @ Xx )
=> ( ! [Xx0: b,Xy: b] :
( ( Xp2 @ Xx @ Xx0 @ Xy )
=> ( Xp2 @ Xx @ Xy @ Xx0 ) )
& ! [Xx0: b,Xy: b,Xz: b] :
( ( ( Xp2 @ Xx @ Xx0 @ Xy )
& ( Xp2 @ Xx @ Xy @ Xz ) )
=> ( Xp2 @ Xx @ Xx0 @ Xz ) ) ) )
& ! [Xx: a,Xy: a] :
( ( Xp @ Xx @ Xy )
=> ( ( Xp2 @ Xx )
= ( Xp2 @ Xy ) ) ) )
=> ( ! [Xx: a > b,Xy: a > b] :
( ! [Xx0: a,Xy0: a] :
( ( Xp @ Xx0 @ Xy0 )
=> ( Xp2 @ Xx0 @ ( Xx @ Xx0 ) @ ( Xy @ Xy0 ) ) )
=> ! [Xx0: a,Xy0: a] :
( ( Xp @ Xx0 @ Xy0 )
=> ( Xp2 @ Xx0 @ ( Xy @ Xx0 ) @ ( Xx @ Xy0 ) ) ) )
& ! [Xx: a > b,Xy: a > b,Xz: a > b] :
( ( ! [Xx0: a,Xy0: a] :
( ( Xp @ Xx0 @ Xy0 )
=> ( Xp2 @ Xx0 @ ( Xx @ Xx0 ) @ ( Xy @ Xy0 ) ) )
& ! [Xx0: a,Xy0: a] :
( ( Xp @ Xx0 @ Xy0 )
=> ( Xp2 @ Xx0 @ ( Xy @ Xx0 ) @ ( Xz @ Xy0 ) ) ) )
=> ! [Xx0: a,Xy0: a] :
( ( Xp @ Xx0 @ Xy0 )
=> ( Xp2 @ Xx0 @ ( Xx @ Xx0 ) @ ( Xz @ Xy0 ) ) ) ) ) ) ).
%------------------------------------------------------------------------------