TPTP Problem File: SEV044^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV044^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem from PERS-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1114 [Bro09]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.08 v8.2.0, 0.09 v8.1.0, 0.08 v7.4.0, 0.11 v7.3.0, 0.10 v7.2.0, 0.12 v7.1.0, 0.14 v7.0.0, 0.12 v6.4.0, 0.14 v6.3.0, 0.17 v6.0.0, 0.00 v5.1.0, 0.25 v5.0.0, 0.00 v4.0.1, 0.33 v4.0.0
% Syntax : Number of formulae : 3 ( 0 unt; 2 typ; 0 def)
% Number of atoms : 0 ( 0 equ; 0 cnn)
% Maximal formula atoms : 0 ( 0 avg)
% Number of connectives : 61 ( 0 ~; 0 |; 4 &; 46 @)
% ( 0 <=>; 11 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 15 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 18 ( 0 ^; 18 !; 0 ?; 18 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(b_type,type,
b: $tType ).
thf(a_type,type,
a: $tType ).
thf(cTHM506_pme,conjecture,
! [Xs: b > $o,Xp: b > a > a > $o] :
( ! [Xx: b] :
( ( Xs @ Xx )
=> ( ! [Xx0: a,Xy: a] :
( ( Xp @ Xx @ Xx0 @ Xy )
=> ( Xp @ Xx @ Xy @ Xx0 ) )
& ! [Xx0: a,Xy: a,Xz: a] :
( ( ( Xp @ Xx @ Xx0 @ Xy )
& ( Xp @ Xx @ Xy @ Xz ) )
=> ( Xp @ Xx @ Xx0 @ Xz ) ) ) )
=> ( ! [Xx: b > a,Xy: b > a] :
( ! [Xx0: b] :
( ( Xs @ Xx0 )
=> ( Xp @ Xx0 @ ( Xx @ Xx0 ) @ ( Xy @ Xx0 ) ) )
=> ! [Xx0: b] :
( ( Xs @ Xx0 )
=> ( Xp @ Xx0 @ ( Xy @ Xx0 ) @ ( Xx @ Xx0 ) ) ) )
& ! [Xx: b > a,Xy: b > a,Xz: b > a] :
( ( ! [Xx0: b] :
( ( Xs @ Xx0 )
=> ( Xp @ Xx0 @ ( Xx @ Xx0 ) @ ( Xy @ Xx0 ) ) )
& ! [Xx0: b] :
( ( Xs @ Xx0 )
=> ( Xp @ Xx0 @ ( Xy @ Xx0 ) @ ( Xz @ Xx0 ) ) ) )
=> ! [Xx0: b] :
( ( Xs @ Xx0 )
=> ( Xp @ Xx0 @ ( Xx @ Xx0 ) @ ( Xz @ Xx0 ) ) ) ) ) ) ).
%------------------------------------------------------------------------------