TPTP Problem File: SEV040^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV040^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem from EQUIVALENCE-RELATIONS-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1214 [Bro09]
% Status : Theorem
% Rating : 0.00 v8.2.0, 0.08 v8.1.0, 0.18 v7.5.0, 0.00 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.29 v5.5.0, 0.33 v5.4.0, 0.40 v5.1.0, 0.60 v4.1.0, 0.33 v4.0.1, 1.00 v4.0.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 8 ( 8 equ; 0 cnn)
% Maximal formula atoms : 6 ( 8 avg)
% Number of connectives : 110 ( 0 ~; 0 |; 24 &; 70 @)
% ( 0 <=>; 16 =>; 0 <=; 0 <~>)
% Maximal formula depth : 19 ( 19 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 18 ( 18 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 0 usr; 0 con; 2-2 aty)
% Number of variables : 44 ( 4 ^; 40 !; 0 ?; 44 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : May require description or choice.
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cTHM515_pme,conjecture,
( ! [Xx: a > a > $o,Xy: a > a > $o] :
( ( ! [Xx0: a,Xy0: a] :
( ( Xx @ Xx0 @ Xy0 )
=> ( Xx @ Xy0 @ Xx0 ) )
& ! [Xx0: a,Xy0: a,Xz: a] :
( ( ( Xx @ Xx0 @ Xy0 )
& ( Xx @ Xy0 @ Xz ) )
=> ( Xx @ Xx0 @ Xz ) )
& ( Xx = Xy ) )
=> ( ! [Xx0: a,Xy0: a] :
( ( Xy @ Xx0 @ Xy0 )
=> ( Xy @ Xy0 @ Xx0 ) )
& ! [Xx0: a,Xy0: a,Xz: a] :
( ( ( Xy @ Xx0 @ Xy0 )
& ( Xy @ Xy0 @ Xz ) )
=> ( Xy @ Xx0 @ Xz ) )
& ( Xy = Xx ) ) )
& ! [Xx: a > a > $o,Xy: a > a > $o,Xz: a > a > $o] :
( ( ! [Xx0: a,Xy0: a] :
( ( Xx @ Xx0 @ Xy0 )
=> ( Xx @ Xy0 @ Xx0 ) )
& ! [Xx0: a,Xy0: a,Xz0: a] :
( ( ( Xx @ Xx0 @ Xy0 )
& ( Xx @ Xy0 @ Xz0 ) )
=> ( Xx @ Xx0 @ Xz0 ) )
& ( Xx = Xy )
& ! [Xx0: a,Xy0: a] :
( ( Xy @ Xx0 @ Xy0 )
=> ( Xy @ Xy0 @ Xx0 ) )
& ! [Xx0: a,Xy0: a,Xz0: a] :
( ( ( Xy @ Xx0 @ Xy0 )
& ( Xy @ Xy0 @ Xz0 ) )
=> ( Xy @ Xx0 @ Xz0 ) )
& ( Xy = Xz ) )
=> ( ! [Xx0: a,Xy0: a] :
( ( Xx @ Xx0 @ Xy0 )
=> ( Xx @ Xy0 @ Xx0 ) )
& ! [Xx0: a,Xy0: a,Xz0: a] :
( ( ( Xx @ Xx0 @ Xy0 )
& ( Xx @ Xy0 @ Xz0 ) )
=> ( Xx @ Xx0 @ Xz0 ) )
& ( Xx = Xz ) ) )
& ( ( ^ [Xp: a > a > $o,Xq: a > a > $o] :
( ! [Xx: a,Xy: a] :
( ( Xp @ Xx @ Xy )
=> ( Xp @ Xy @ Xx ) )
& ! [Xx: a,Xy: a,Xz: a] :
( ( ( Xp @ Xx @ Xy )
& ( Xp @ Xy @ Xz ) )
=> ( Xp @ Xx @ Xz ) )
& ( Xp = Xq ) ) )
= ( ^ [Xp: a > a > $o,Xq: a > a > $o] :
( ! [Xx: a,Xy: a] :
( ( Xp @ Xx @ Xy )
=> ( Xp @ Xy @ Xx ) )
& ! [Xx: a,Xy: a,Xz: a] :
( ( ( Xp @ Xx @ Xy )
& ( Xp @ Xy @ Xz ) )
=> ( Xp @ Xx @ Xz ) )
& ( Xp = Xq ) ) ) ) ) ).
%------------------------------------------------------------------------------