TPTP Problem File: SEV035^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV035^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem from EQUIVALENCE-RELATIONS-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1195 [Bro09]
% : tps_1196 [Bro09]
% Status : Theorem
% Rating : 1.00 v9.0.0, 0.90 v8.2.0, 0.92 v8.1.0, 1.00 v4.0.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 18 ( 18 equ; 0 cnn)
% Maximal formula atoms : 6 ( 18 avg)
% Number of connectives : 71 ( 0 ~; 0 |; 15 &; 42 @)
% ( 0 <=>; 14 =>; 0 <=; 0 <~>)
% Maximal formula depth : 14 ( 14 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 12 ( 12 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 0 usr; 0 con; 2-2 aty)
% Number of variables : 48 ( 18 ^; 18 !; 12 ?; 48 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cEQP1_1_pme,conjecture,
( ! [Xx: a > $o] :
? [Xs: a > a] :
( ! [Xx0: a] :
( ( Xx @ Xx0 )
=> ( Xx @ ( Xs @ Xx0 ) ) )
& ! [Xy: a] :
( ( Xx @ Xy )
=> ? [Xy_20: a] :
( ( ^ [Xx0: a] :
( ( Xx @ Xx0 )
& ( Xy
= ( Xs @ Xx0 ) ) ) )
= ( ^ [Xx: a,Xy: a] : ( Xx = Xy )
@ Xy_20 ) ) ) )
& ! [Xx: a > $o,Xy: a > $o] :
( ? [Xs: a > a] :
( ! [Xx0: a] :
( ( Xx @ Xx0 )
=> ( Xy @ ( Xs @ Xx0 ) ) )
& ! [Xy0: a] :
( ( Xy @ Xy0 )
=> ? [Xy_21: a] :
( ( ^ [Xx0: a] :
( ( Xx @ Xx0 )
& ( Xy0
= ( Xs @ Xx0 ) ) ) )
= ( ^ [Xx: a,Xy: a] : ( Xx = Xy )
@ Xy_21 ) ) ) )
=> ? [Xs: a > a] :
( ! [Xx0: a] :
( ( Xy @ Xx0 )
=> ( Xx @ ( Xs @ Xx0 ) ) )
& ! [Xy0: a] :
( ( Xx @ Xy0 )
=> ? [Xy_22: a] :
( ( ^ [Xx0: a] :
( ( Xy @ Xx0 )
& ( Xy0
= ( Xs @ Xx0 ) ) ) )
= ( ^ [Xx: a,Xy: a] : ( Xx = Xy )
@ Xy_22 ) ) ) ) )
& ! [Xx: a > $o,Xy: a > $o,Xz: a > $o] :
( ( ? [Xs: a > a] :
( ! [Xx0: a] :
( ( Xx @ Xx0 )
=> ( Xy @ ( Xs @ Xx0 ) ) )
& ! [Xy0: a] :
( ( Xy @ Xy0 )
=> ? [Xy_23: a] :
( ( ^ [Xx0: a] :
( ( Xx @ Xx0 )
& ( Xy0
= ( Xs @ Xx0 ) ) ) )
= ( ^ [Xx: a,Xy: a] : ( Xx = Xy )
@ Xy_23 ) ) ) )
& ? [Xs: a > a] :
( ! [Xx0: a] :
( ( Xy @ Xx0 )
=> ( Xz @ ( Xs @ Xx0 ) ) )
& ! [Xy0: a] :
( ( Xz @ Xy0 )
=> ? [Xy_24: a] :
( ( ^ [Xx0: a] :
( ( Xy @ Xx0 )
& ( Xy0
= ( Xs @ Xx0 ) ) ) )
= ( ^ [Xx: a,Xy: a] : ( Xx = Xy )
@ Xy_24 ) ) ) ) )
=> ? [Xs: a > a] :
( ! [Xx0: a] :
( ( Xx @ Xx0 )
=> ( Xz @ ( Xs @ Xx0 ) ) )
& ! [Xy0: a] :
( ( Xz @ Xy0 )
=> ? [Xy_25: a] :
( ( ^ [Xx0: a] :
( ( Xx @ Xx0 )
& ( Xy0
= ( Xs @ Xx0 ) ) ) )
= ( ^ [Xx: a,Xy: a] : ( Xx = Xy )
@ Xy_25 ) ) ) ) ) ) ).
%------------------------------------------------------------------------------