TPTP Problem File: SEV034^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV034^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem from EQUIVALENCE-RELATIONS-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1141 [Bro09]
% Status : Theorem
% Rating : 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.14 v6.4.0, 0.17 v6.3.0, 0.20 v6.2.0, 0.29 v5.5.0, 0.17 v5.4.0, 0.20 v5.1.0, 0.40 v5.0.0, 0.20 v4.1.0, 0.00 v4.0.1, 0.33 v4.0.0
% Syntax : Number of formulae : 3 ( 0 unt; 2 typ; 0 def)
% Number of atoms : 2 ( 2 equ; 0 cnn)
% Maximal formula atoms : 2 ( 2 avg)
% Number of connectives : 68 ( 0 ~; 0 |; 6 &; 50 @)
% ( 0 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 22 ( 22 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 0 usr; 0 con; 2-2 aty)
% Number of variables : 21 ( 0 ^; 21 !; 0 ?; 21 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(b_type,type,
b: $tType ).
thf(cTHM518_pme,conjecture,
! [Xp: a > a > $o,Xq: a > b > b > $o,Xf: a > b,Xg: a > b] :
( ! [Xx: a] :
( ( Xp @ Xx @ Xx )
=> ( Xq @ Xx @ ( Xf @ Xx ) @ ( Xg @ Xx ) ) )
=> ( ! [Xx: a,Xy: a] :
( ( Xp @ Xx @ Xy )
=> ( Xq @ Xx @ ( Xf @ Xx ) @ ( Xf @ Xy ) ) )
=> ( ( ! [Xx: a,Xy: a] :
( ( Xp @ Xx @ Xy )
=> ( Xp @ Xy @ Xx ) )
& ! [Xx: a,Xy: a,Xz: a] :
( ( ( Xp @ Xx @ Xy )
& ( Xp @ Xy @ Xz ) )
=> ( Xp @ Xx @ Xz ) )
& ( Xp = Xp ) )
=> ( ! [Xx: a,Xy: a] :
( ( Xp @ Xx @ Xy )
=> ( ! [Xx0: b,Xy0: b] :
( ( Xq @ Xx @ Xx0 @ Xy0 )
=> ( Xq @ Xx @ Xy0 @ Xx0 ) )
& ! [Xx0: b,Xy0: b,Xz: b] :
( ( ( Xq @ Xx @ Xx0 @ Xy0 )
& ( Xq @ Xx @ Xy0 @ Xz ) )
=> ( Xq @ Xx @ Xx0 @ Xz ) )
& ( ( Xq @ Xx )
= ( Xq @ Xy ) ) ) )
=> ! [Xx: a,Xy: a] :
( ( Xp @ Xx @ Xy )
=> ( Xq @ Xx @ ( Xf @ Xx ) @ ( Xg @ Xy ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------