TPTP Problem File: SEV031^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV031^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem from EQUIVALENCE-RELATIONS-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1127 [Bro09]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.08 v8.2.0, 0.09 v8.1.0, 0.17 v7.5.0, 0.08 v7.4.0, 0.11 v7.3.0, 0.10 v7.2.0, 0.12 v7.1.0, 0.14 v7.0.0, 0.12 v6.4.0, 0.14 v6.3.0, 0.17 v6.0.0, 0.00 v5.1.0, 0.25 v5.0.0, 0.00 v4.0.1, 0.33 v4.0.0
% Syntax : Number of formulae : 3 ( 0 unt; 2 typ; 0 def)
% Number of atoms : 0 ( 0 equ; 0 cnn)
% Maximal formula atoms : 0 ( 0 avg)
% Number of connectives : 61 ( 0 ~; 0 |; 6 &; 43 @)
% ( 0 <=>; 12 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 16 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 18 ( 18 >; 0 *; 0 +; 0 <<)
% Number of symbols : 0 ( 0 usr; 0 con; --- aty)
% Number of variables : 21 ( 0 ^; 21 !; 0 ?; 21 :)
% SPC : TH0_THM_NEQ_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(b_type,type,
b: $tType ).
thf(cTHM512_pme,conjecture,
! [Xp: a > $o,Xe: a > ( a > b ) > ( a > b ) > $o] :
( ! [Xx: a] :
( ( Xp @ Xx )
=> ( ! [Xx0: a > b] : ( Xe @ Xx @ Xx0 @ Xx0 )
& ! [Xx0: a > b,Xy: a > b] :
( ( Xe @ Xx @ Xx0 @ Xy )
=> ( Xe @ Xx @ Xy @ Xx0 ) )
& ! [Xx0: a > b,Xy: a > b,Xz: a > b] :
( ( ( Xe @ Xx @ Xx0 @ Xy )
& ( Xe @ Xx @ Xy @ Xz ) )
=> ( Xe @ Xx @ Xx0 @ Xz ) ) ) )
=> ( ! [Xx: a > b,Xx0: a] :
( ( Xp @ Xx0 )
=> ( Xe @ Xx0 @ Xx @ Xx ) )
& ! [Xx: a > b,Xy: a > b] :
( ! [Xx0: a] :
( ( Xp @ Xx0 )
=> ( Xe @ Xx0 @ Xx @ Xy ) )
=> ! [Xx0: a] :
( ( Xp @ Xx0 )
=> ( Xe @ Xx0 @ Xy @ Xx ) ) )
& ! [Xx: a > b,Xy: a > b,Xz: a > b] :
( ( ! [Xx0: a] :
( ( Xp @ Xx0 )
=> ( Xe @ Xx0 @ Xx @ Xy ) )
& ! [Xx0: a] :
( ( Xp @ Xx0 )
=> ( Xe @ Xx0 @ Xy @ Xz ) ) )
=> ! [Xx0: a] :
( ( Xp @ Xx0 )
=> ( Xe @ Xx0 @ Xx @ Xz ) ) ) ) ) ).
%------------------------------------------------------------------------------