TPTP Problem File: SEV029^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV029^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem from EQUIVALENCE-RELATIONS-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1124 [Bro09]
% Status : CounterSatisfiable
% Rating : 0.33 v9.0.0, 0.50 v8.1.0, 0.20 v7.4.0, 0.25 v7.2.0, 0.00 v6.4.0, 0.33 v6.3.0, 0.00 v5.4.0, 0.67 v5.0.0, 0.00 v4.0.0
% Syntax : Number of formulae : 2 ( 1 unt; 1 typ; 0 def)
% Number of atoms : 1 ( 1 equ; 0 cnn)
% Maximal formula atoms : 1 ( 1 avg)
% Number of connectives : 50 ( 0 ~; 0 |; 9 &; 30 @)
% ( 5 <=>; 6 =>; 0 <=; 0 <~>)
% Maximal formula depth : 16 ( 16 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 7 ( 7 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 0 usr; 0 con; 2-2 aty)
% Number of variables : 23 ( 0 ^; 16 !; 7 ?; 23 :)
% SPC : TH0_CSA_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cTHM260A_pme,conjecture,
! [Xr: a > a > $o,Xs: a > $o] :
( ( ! [Xx: a] :
( ( Xs @ Xx )
=> ( Xr @ Xx @ Xx ) )
& ! [Xx: a,Xy: a] :
( ( Xr @ Xx @ Xy )
=> ( Xr @ Xy @ Xx ) )
& ! [Xx: a,Xy: a,Xz: a] :
( ( ( Xr @ Xx @ Xy )
& ( Xr @ Xy @ Xz ) )
=> ( Xr @ Xx @ Xz ) ) )
=> ( ! [Xa: a > $o] :
( ? [Xx: a] :
! [Xx_1: a] :
( ( Xa @ Xx_1 )
<=> ( Xr @ Xx @ Xx_1 ) )
=> ? [Xx: a] : ( Xa @ Xx ) )
& ! [Xx: a] :
( ( Xs @ Xx )
<=> ? [S: a > $o] :
( ? [Xx0: a] :
! [Xx_2: a] :
( ( S @ Xx_2 )
<=> ( Xr @ Xx0 @ Xx_2 ) )
& ( S @ Xx ) ) )
& ! [Xb: a > $o,Xc: a > $o] :
( ( ? [Xx: a] :
! [Xx_3: a] :
( ( Xb @ Xx_3 )
<=> ( Xr @ Xx @ Xx_3 ) )
& ? [Xx: a] :
! [Xx_4: a] :
( ( Xc @ Xx_4 )
<=> ( Xr @ Xx @ Xx_4 ) )
& ? [Xx: a] :
( ( Xb @ Xx )
& ( Xc @ Xx ) ) )
=> ( Xb = Xc ) ) ) ) ).
%------------------------------------------------------------------------------