TPTP Problem File: SEV028^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV028^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem from EQUIVALENCE-RELATIONS-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1122 [Bro09]
% Status : Theorem
% Rating : 0.00 v9.0.0, 0.10 v8.2.0, 0.08 v8.1.0, 0.09 v7.5.0, 0.14 v7.4.0, 0.22 v7.2.0, 0.12 v7.1.0, 0.38 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.43 v5.5.0, 0.33 v5.4.0, 0.40 v5.1.0, 0.60 v5.0.0, 0.40 v4.1.0, 0.33 v4.0.1, 0.67 v4.0.0
% Syntax : Number of formulae : 3 ( 0 unt; 2 typ; 0 def)
% Number of atoms : 10 ( 1 equ; 0 cnn)
% Maximal formula atoms : 10 ( 10 avg)
% Number of connectives : 51 ( 0 ~; 0 |; 10 &; 30 @)
% ( 3 <=>; 8 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 18 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 5 ( 5 >; 0 *; 0 +; 0 <<)
% Number of symbols : 2 ( 1 usr; 0 con; 2-2 aty)
% Number of variables : 20 ( 0 ^; 15 !; 5 ?; 20 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cQ,type,
cQ: a > a > $o ).
thf(cTHM558_pme,conjecture,
( ( ! [Xp: a > $o] :
( ( ? [Xz: a] : ( Xp @ Xz )
& ! [Xx: a] :
( ( Xp @ Xx )
=> ! [Xy: a] :
( ( Xp @ Xy )
<=> ( cQ @ Xx @ Xy ) ) ) )
=> ? [Xz: a] : ( Xp @ Xz ) )
& ! [Xx: a] :
? [Xp: a > $o] :
( ? [Xz: a] : ( Xp @ Xz )
& ! [Xx0: a] :
( ( Xp @ Xx0 )
=> ! [Xy: a] :
( ( Xp @ Xy )
<=> ( cQ @ Xx0 @ Xy ) ) )
& ( Xp @ Xx )
& ! [Xq: a > $o] :
( ( ? [Xz: a] : ( Xq @ Xz )
& ! [Xx0: a] :
( ( Xq @ Xx0 )
=> ! [Xy: a] :
( ( Xq @ Xy )
<=> ( cQ @ Xx0 @ Xy ) ) )
& ( Xq @ Xx ) )
=> ( Xq = Xp ) ) ) )
=> ( ! [Xx: a] : ( cQ @ Xx @ Xx )
& ! [Xx: a,Xy: a] :
( ( cQ @ Xx @ Xy )
=> ( cQ @ Xy @ Xx ) )
& ! [Xx: a,Xy: a,Xz: a] :
( ( ( cQ @ Xx @ Xy )
& ( cQ @ Xy @ Xz ) )
=> ( cQ @ Xx @ Xz ) ) ) ) ).
%------------------------------------------------------------------------------