TPTP Problem File: SEV000^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEV000^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem MODULAR-EQUIV-THM
% Version : Especial.
% English : The equivalence of two definitions of modularity.
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0562 [Bro09]
% : MODULAR-EQUIV-THM [TPS]
% Status : Theorem
% Rating : 0.12 v9.0.0, 0.10 v8.2.0, 0.08 v8.1.0, 0.00 v7.4.0, 0.11 v7.2.0, 0.00 v7.1.0, 0.25 v7.0.0, 0.29 v6.4.0, 0.33 v6.3.0, 0.40 v6.2.0, 0.43 v6.1.0, 0.29 v5.5.0, 0.50 v5.4.0, 0.60 v5.1.0, 0.80 v5.0.0, 1.00 v4.1.0, 0.67 v4.0.1, 1.00 v4.0.0
% Syntax : Number of formulae : 2 ( 0 unt; 1 typ; 0 def)
% Number of atoms : 11 ( 11 equ; 0 cnn)
% Maximal formula atoms : 11 ( 11 avg)
% Number of connectives : 68 ( 0 ~; 0 |; 7 &; 58 @)
% ( 1 <=>; 2 =>; 0 <=; 0 <~>)
% Maximal formula depth : 13 ( 13 avg)
% Number of types : 1 ( 1 usr)
% Number of type conns : 4 ( 4 >; 0 *; 0 +; 0 <<)
% Number of symbols : 1 ( 0 usr; 0 con; 2-2 aty)
% Number of variables : 24 ( 0 ^; 24 !; 0 ?; 24 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cMODULAR_EQUIV_THM_pme,conjecture,
! [JOIN: a > a > a,MEET: a > a > a] :
( ( ! [Xx: a] :
( ( JOIN @ Xx @ Xx )
= Xx )
& ! [Xx: a] :
( ( MEET @ Xx @ Xx )
= Xx )
& ! [Xx: a,Xy: a,Xz: a] :
( ( JOIN @ ( JOIN @ Xx @ Xy ) @ Xz )
= ( JOIN @ Xx @ ( JOIN @ Xy @ Xz ) ) )
& ! [Xx: a,Xy: a,Xz: a] :
( ( MEET @ ( MEET @ Xx @ Xy ) @ Xz )
= ( MEET @ Xx @ ( MEET @ Xy @ Xz ) ) )
& ! [Xx: a,Xy: a] :
( ( JOIN @ Xx @ Xy )
= ( JOIN @ Xy @ Xx ) )
& ! [Xx: a,Xy: a] :
( ( MEET @ Xx @ Xy )
= ( MEET @ Xy @ Xx ) )
& ! [Xx: a,Xy: a] :
( ( JOIN @ ( MEET @ Xx @ Xy ) @ Xy )
= Xy )
& ! [Xx: a,Xy: a] :
( ( MEET @ ( JOIN @ Xx @ Xy ) @ Xy )
= Xy ) )
=> ( ! [Xx: a,Xy: a,Xz: a] :
( ( ( JOIN @ Xx @ Xz )
= Xz )
=> ( ( JOIN @ Xx @ ( MEET @ Xy @ Xz ) )
= ( MEET @ ( JOIN @ Xx @ Xy ) @ Xz ) ) )
<=> ! [Xx: a,Xy: a,Xz: a] :
( ( JOIN @ Xx @ ( MEET @ Xy @ ( JOIN @ Xx @ Xz ) ) )
= ( MEET @ ( JOIN @ Xx @ Xy ) @ ( JOIN @ Xx @ Xz ) ) ) ) ) ).
%------------------------------------------------------------------------------