TPTP Problem File: SEU984^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU984^5 : TPTP v9.0.0. Bugfixed v6.2.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem from FINITE-SETS-CHECKERBOARD
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1037 [Bro09]
% Status : Unknown
% Rating : 1.00 v6.2.0
% Syntax : Number of formulae : 9 ( 4 unt; 4 typ; 4 def)
% Number of atoms : 20 ( 10 equ; 0 cnn)
% Maximal formula atoms : 5 ( 4 avg)
% Number of connectives : 63 ( 2 ~; 2 |; 10 &; 39 @)
% ( 0 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 4 avg)
% Number of types : 2 ( 0 usr)
% Number of type conns : 49 ( 49 >; 0 *; 0 +; 0 <<)
% Number of symbols : 6 ( 4 usr; 1 con; 0-4 aty)
% Number of variables : 35 ( 11 ^; 19 !; 5 ?; 35 :)
% SPC : TH0_UNK_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% Bugfixes : v5.2.0 - Added missing type declarations.
% : v6.2.0 - Reordered definitions.
%------------------------------------------------------------------------------
thf(cCKB_FIN_type,type,
cCKB_FIN: ( $i > $i > $o ) > $o ).
thf(cCKB_INF_type,type,
cCKB_INF: ( $i > $i > $o ) > $o ).
thf(cCKB_INJ_type,type,
cCKB_INJ: ( $i > $i > $i > $i > $o ) > $o ).
thf(cCKB_XPL_type,type,
cCKB_XPL: ( $i > $i > $i > $i > $o ) > ( $i > $i > $o ) > $i > $i > $o ).
thf(cCKB_INJ_def,definition,
( cCKB_INJ
= ( ^ [Xh: $i > $i > $i > $i > $o] :
! [Xx1: $i,Xy1: $i,Xx2: $i,Xy2: $i,Xu: $i,Xv: $i] :
( ( ( Xh @ Xx1 @ Xy1 @ Xu @ Xv )
& ( Xh @ Xx2 @ Xy2 @ Xu @ Xv ) )
=> ( ( Xx1 = Xx2 )
& ( Xy1 = Xy2 ) ) ) ) ) ).
thf(cCKB_XPL_def,definition,
( cCKB_XPL
= ( ^ [Xh: $i > $i > $i > $i > $o,Xk: $i > $i > $o,Xm: $i,Xn: $i] :
( ( Xk @ Xm @ Xn )
& ! [Xx: $i,Xy: $i] :
( ( Xk @ Xx @ Xy )
=> ? [Xu: $i,Xv: $i] :
( ( Xh @ Xx @ Xy @ Xu @ Xv )
& ( Xk @ Xu @ Xv )
& ~ ( ( Xu = Xm )
& ( Xv = Xn ) ) ) ) ) ) ) ).
thf(cCKB_INF_def,definition,
( cCKB_INF
= ( ^ [Xk: $i > $i > $o] :
? [Xh: $i > $i > $i > $i > $o,Xm: $i,Xn: $i] :
( ( cCKB_INJ @ Xh )
& ( cCKB_XPL @ Xh @ Xk @ Xm @ Xn ) ) ) ) ).
thf(cCKB_FIN_def,definition,
( cCKB_FIN
= ( ^ [Xk: $i > $i > $o] :
~ ( cCKB_INF @ Xk ) ) ) ).
thf(cCKB6_L70000_pme,conjecture,
! [Xp: $i > $o] :
( ! [Xw: ( $i > $o ) > $o] :
( ( ( Xw
@ ^ [Xx: $i] : $false )
& ! [Xr: $i > $o,Xx: $i] :
( ( Xw @ Xr )
=> ( Xw
@ ^ [Xt: $i] :
( ( Xr @ Xt )
| ( Xt = Xx ) ) ) ) )
=> ( Xw @ Xp ) )
=> ! [Xq: $i > $o] :
( ! [Xw: ( $i > $o ) > $o] :
( ( ( Xw
@ ^ [Xx: $i] : $false )
& ! [Xr: $i > $o,Xx: $i] :
( ( Xw @ Xr )
=> ( Xw
@ ^ [Xt: $i] :
( ( Xr @ Xt )
| ( Xt = Xx ) ) ) ) )
=> ( Xw @ Xq ) )
=> ! [Xk: $i > $i > $o] :
( ! [Xx: $i,Xy: $i] :
( ( Xk @ Xx @ Xy )
=> ( ( Xp @ Xx )
& ( Xq @ Xy ) ) )
=> ( cCKB_FIN @ Xk ) ) ) ) ).
%------------------------------------------------------------------------------