TPTP Problem File: SEU977^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU977^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem from COINDUCTIVE-PU-ALG-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1201 [Bro09]
% Status : Unknown
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 8 ( 0 unt; 7 typ; 0 def)
% Number of atoms : 14 ( 14 equ; 0 cnn)
% Maximal formula atoms : 14 ( 14 avg)
% Number of connectives : 109 ( 2 ~; 0 |; 15 &; 74 @)
% ( 2 <=>; 16 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 18 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 7 ( 6 usr; 3 con; 0-2 aty)
% Number of variables : 20 ( 0 ^; 18 !; 2 ?; 20 :)
% SPC : TH0_UNK_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cR,type,
cR: a > a ).
thf(cP,type,
cP: a > a > a ).
thf(cL,type,
cL: a > a ).
thf(cZ,type,
cZ: a ).
thf(m,type,
m: a ).
thf(n,type,
n: a ).
thf(cPU_LESS_SUCC_LT_pme,conjecture,
( ( ( ( cL @ cZ )
= cZ )
& ( ( cR @ cZ )
= cZ )
& ! [Xx: a,Xy: a] :
( ( cL @ ( cP @ Xx @ Xy ) )
= Xx )
& ! [Xx: a,Xy: a] :
( ( cR @ ( cP @ Xx @ Xy ) )
= Xy )
& ! [Xt: a] :
( ( Xt != cZ )
<=> ( Xt
= ( cP @ ( cL @ Xt ) @ ( cR @ Xt ) ) ) )
& ! [X: a > $o] :
( ! [Xt: a,Xu: a] :
( ( X @ ( cP @ Xt @ Xu ) )
=> ( ( ( Xt = cZ )
<=> ( Xu = cZ ) )
& ( X @ ( cP @ ( cL @ Xt ) @ ( cL @ Xu ) ) )
& ( X @ ( cP @ ( cR @ Xt ) @ ( cR @ Xu ) ) ) ) )
=> ! [Xt: a,Xu: a] :
( ( X @ ( cP @ Xt @ Xu ) )
=> ( Xt = Xu ) ) ) )
=> ( ! [X: a > $o] :
( ( ( X @ cZ )
& ! [Xx: a] :
( ( X @ Xx )
=> ( X @ ( cP @ Xx @ cZ ) ) ) )
=> ( X @ n ) )
=> ( ! [X: a > $o] :
( ( ( X @ cZ )
& ! [Xx: a] :
( ( X @ Xx )
=> ( X @ ( cP @ Xx @ cZ ) ) ) )
=> ( X @ m ) )
=> ( ? [X: a > $o] :
( ( X @ ( cP @ n @ m ) )
& ! [Xt: a,Xu: a] :
( ( X @ ( cP @ Xt @ Xu ) )
=> ( ( ( Xu = cZ )
=> ( Xt = cZ ) )
& ( X @ ( cP @ ( cL @ Xt ) @ ( cL @ Xu ) ) )
& ( X @ ( cP @ ( cR @ Xt ) @ ( cR @ Xu ) ) ) ) ) )
=> ( ( n != m )
=> ? [X: a > $o] :
( ( X @ ( cP @ ( cP @ n @ cZ ) @ m ) )
& ! [Xt: a,Xu: a] :
( ( X @ ( cP @ Xt @ Xu ) )
=> ( ( ( Xu = cZ )
=> ( Xt = cZ ) )
& ( X @ ( cP @ ( cL @ Xt ) @ ( cL @ Xu ) ) )
& ( X @ ( cP @ ( cR @ Xt ) @ ( cR @ Xu ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------