TPTP Problem File: SEU976^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU976^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Relations)
% Problem : TPS problem from COINDUCTIVE-PU-ALG-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1200 [Bro09]
% Status : Unknown
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 6 ( 0 unt; 5 typ; 0 def)
% Number of atoms : 13 ( 13 equ; 0 cnn)
% Maximal formula atoms : 13 ( 13 avg)
% Number of connectives : 105 ( 1 ~; 1 |; 16 &; 72 @)
% ( 2 <=>; 13 =>; 0 <=; 0 <~>)
% Maximal formula depth : 18 ( 18 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 9 ( 9 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 1 con; 0-2 aty)
% Number of variables : 22 ( 0 ^; 20 !; 2 ?; 22 :)
% SPC : TH0_UNK_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cR,type,
cR: a > a ).
thf(cP,type,
cP: a > a > a ).
thf(cL,type,
cL: a > a ).
thf(cZ,type,
cZ: a ).
thf(cPU_LEM3B_pme,conjecture,
( ( ( ( cL @ cZ )
= cZ )
& ( ( cR @ cZ )
= cZ )
& ! [Xx: a,Xy: a] :
( ( cL @ ( cP @ Xx @ Xy ) )
= Xx )
& ! [Xx: a,Xy: a] :
( ( cR @ ( cP @ Xx @ Xy ) )
= Xy )
& ! [Xt: a] :
( ( Xt != cZ )
<=> ( Xt
= ( cP @ ( cL @ Xt ) @ ( cR @ Xt ) ) ) )
& ! [X: a > $o] :
( ! [Xt: a,Xu: a] :
( ( X @ ( cP @ Xt @ Xu ) )
=> ( ( ( Xt = cZ )
<=> ( Xu = cZ ) )
& ( X @ ( cP @ ( cL @ Xt ) @ ( cL @ Xu ) ) )
& ( X @ ( cP @ ( cR @ Xt ) @ ( cR @ Xu ) ) ) ) )
=> ! [Xt: a,Xu: a] :
( ( X @ ( cP @ Xt @ Xu ) )
=> ( Xt = Xu ) ) ) )
=> ! [Xx: a,Xy: a] :
( ( ! [X: a > $o] :
( ( ( X @ cZ )
& ! [Xx0: a] :
( ( X @ Xx0 )
=> ( X @ ( cP @ Xx0 @ cZ ) ) ) )
=> ( X @ Xx ) )
& ! [X: a > $o] :
( ( ( X @ cZ )
& ! [Xx0: a] :
( ( X @ Xx0 )
=> ( X @ ( cP @ Xx0 @ cZ ) ) ) )
=> ( X @ Xy ) ) )
=> ( ? [X: a > $o] :
( ( X @ ( cP @ Xx @ Xy ) )
& ! [Xt: a,Xu: a] :
( ( X @ ( cP @ Xt @ Xu ) )
=> ( ( ( Xu = cZ )
=> ( Xt = cZ ) )
& ( X @ ( cP @ ( cL @ Xt ) @ ( cL @ Xu ) ) )
& ( X @ ( cP @ ( cR @ Xt ) @ ( cR @ Xu ) ) ) ) ) )
| ? [X: a > $o] :
( ( X @ ( cP @ Xy @ Xx ) )
& ! [Xt: a,Xu: a] :
( ( X @ ( cP @ Xt @ Xu ) )
=> ( ( ( Xu = cZ )
=> ( Xt = cZ ) )
& ( X @ ( cP @ ( cL @ Xt ) @ ( cL @ Xu ) ) )
& ( X @ ( cP @ ( cR @ Xt ) @ ( cR @ Xu ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------