TPTP Problem File: SEU910^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU910^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory
% Problem : TPS problem from SET-TOP-CATEGORY-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1228 [Bro09]
% Status : Theorem
% Rating : 1.00 v6.2.0, 0.71 v6.1.0, 0.86 v5.5.0, 0.83 v5.4.0, 1.00 v4.0.0
% Syntax : Number of formulae : 5 ( 0 unt; 4 typ; 0 def)
% Number of atoms : 23 ( 2 equ; 0 cnn)
% Maximal formula atoms : 23 ( 23 avg)
% Number of connectives : 128 ( 0 ~; 4 |; 25 &; 69 @)
% ( 0 <=>; 30 =>; 0 <=; 0 <~>)
% Maximal formula depth : 21 ( 21 avg)
% Number of types : 3 ( 2 usr)
% Number of type conns : 90 ( 90 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 2 usr; 1 con; 0-2 aty)
% Number of variables : 58 ( 13 ^; 30 !; 15 ?; 58 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(b_type,type,
b: $tType ).
thf(cA,type,
cA: ( a > $o ) > $o ).
thf(cB,type,
cB: ( b > $o ) > $o ).
thf(cDOMTHM17_pme,conjecture,
( ! [Xx: a > $o] :
( ( cA @ Xx )
=> ( ? [X: a > $o] :
( ( cA @ X )
& ! [G: ( a > $o ) > ( b > $o ) > $o] :
( ? [Xx0: a] :
( ( Xx @ Xx0 )
& ! [U: a > $o] :
( ( U @ Xx0 )
=> ( G @ U
@ ^ [Xy: b] : $false ) ) )
=> ? [Xx0: a] :
( ( X @ Xx0 )
& ! [U: a > $o] :
( ( U @ Xx0 )
=> ( G @ U
@ ^ [Xy: b] : $false ) ) ) ) )
| ? [Y: b > $o] :
( ( cB @ Y )
& ! [G: ( a > $o ) > ( b > $o ) > $o] :
( ? [Xx0: a] :
( ( Xx @ Xx0 )
& ! [U: a > $o] :
( ( U @ Xx0 )
=> ( G @ U
@ ^ [Xy: b] : $false ) ) )
=> ? [Xy: b] :
( ( Y @ Xy )
& ! [V: b > $o] :
( ( V @ Xy )
=> ( G
@ ^ [Xx0: a] : $false
@ V ) ) ) ) ) ) )
& ! [Xe: ( ( a > $o ) > ( b > $o ) > $o ) > $o] :
( ( ! [X: ( ( ( a > $o ) > ( b > $o ) > $o ) > $o ) > $o] :
( ( ( X
@ ^ [Xy: ( a > $o ) > ( b > $o ) > $o] : $false )
& ! [Xx: ( ( a > $o ) > ( b > $o ) > $o ) > $o] :
( ( X @ Xx )
=> ! [Xt: ( a > $o ) > ( b > $o ) > $o] :
( ( Xe @ Xt )
=> ( X
@ ^ [Xz: ( a > $o ) > ( b > $o ) > $o] :
( ( Xx @ Xz )
| ( Xt = Xz ) ) ) ) ) )
=> ( X @ Xe ) )
& ! [Xx: ( a > $o ) > ( b > $o ) > $o] :
( ( Xe @ Xx )
=> ? [S: ( ( a > $o ) > ( b > $o ) > $o ) > $o] :
( ( ? [X: a > $o] :
( ( cA @ X )
& ! [G: ( a > $o ) > ( b > $o ) > $o] :
( ( S @ G )
=> ? [Xx0: a] :
( ( X @ Xx0 )
& ! [U: a > $o] :
( ( U @ Xx0 )
=> ( G @ U
@ ^ [Xy: b] : $false ) ) ) ) )
| ? [Y: b > $o] :
( ( cB @ Y )
& ! [G: ( a > $o ) > ( b > $o ) > $o] :
( ( S @ G )
=> ? [Xy: b] :
( ( Y @ Xy )
& ! [V: b > $o] :
( ( V @ Xy )
=> ( G
@ ^ [Xx0: a] : $false
@ V ) ) ) ) ) )
& ( S @ Xx ) ) ) )
=> ( ! [Xx: a > $o] :
( ( ( cA @ Xx )
& ! [Xx0: ( a > $o ) > ( b > $o ) > $o] :
( ( Xe @ Xx0 )
=> ? [Xx1: a] :
( ( Xx @ Xx1 )
& ! [U: a > $o] :
( ( U @ Xx1 )
=> ( Xx0 @ U
@ ^ [Xy: b] : $false ) ) ) ) )
=> ( cA @ Xx ) )
& ! [Xx: a > $o] :
( ( ( cA @ Xx )
& ! [Xx0: ( a > $o ) > ( b > $o ) > $o] :
( ( Xe @ Xx0 )
=> ? [Xx1: a] :
( ( Xx @ Xx1 )
& ! [U: a > $o] :
( ( U @ Xx1 )
=> ( Xx0 @ U
@ ^ [Xy: b] : $false ) ) ) ) )
=> ? [Xe0: a > $o] :
( ! [X: ( a > $o ) > $o] :
( ( ( X
@ ^ [Xy: a] : $false )
& ! [Xx0: a > $o] :
( ( X @ Xx0 )
=> ! [Xt: a] :
( ( Xe0 @ Xt )
=> ( X
@ ^ [Xz: a] :
( ( Xx0 @ Xz )
| ( Xt = Xz ) ) ) ) ) )
=> ( X @ Xe0 ) )
& ! [Xx0: a] :
( ( Xe0 @ Xx0 )
=> ( Xx @ Xx0 ) )
& ! [Xy: a > $o] :
( ( ( cA @ Xy )
& ! [Xx0: a] :
( ( Xe0 @ Xx0 )
=> ( Xy @ Xx0 ) ) )
=> ( ( cA @ Xy )
& ! [Xx0: ( a > $o ) > ( b > $o ) > $o] :
( ( Xe @ Xx0 )
=> ? [Xx1: a] :
( ( Xy @ Xx1 )
& ! [U: a > $o] :
( ( U @ Xx1 )
=> ( Xx0 @ U
@ ^ [Xy0: b] : $false ) ) ) ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------