TPTP Problem File: SEU888^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU888^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory
% Problem : TPS problem THM500C-WFF
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_0287 [Bro09]
% : THM500C-WFF [TPS]
% Status : Theorem
% Rating : 0.00 v6.1.0, 0.14 v5.5.0, 0.17 v5.4.0, 0.20 v5.3.0, 0.40 v5.2.0, 0.20 v4.1.0, 0.00 v4.0.0
% Syntax : Number of formulae : 7 ( 0 unt; 6 typ; 0 def)
% Number of atoms : 5 ( 5 equ; 0 cnn)
% Maximal formula atoms : 5 ( 5 avg)
% Number of connectives : 7 ( 0 ~; 2 |; 1 &; 3 @)
% ( 0 <=>; 1 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 5 avg)
% Number of types : 2 ( 2 usr)
% Number of type conns : 1 ( 1 >; 0 *; 0 +; 0 <<)
% Number of symbols : 5 ( 4 usr; 3 con; 0-2 aty)
% Number of variables : 1 ( 0 ^; 0 !; 1 ?; 1 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
% : Polymorphic definitions expanded.
%------------------------------------------------------------------------------
thf(b_type,type,
b: $tType ).
thf(a_type,type,
a: $tType ).
thf(g,type,
g: b > a ).
thf(z,type,
z: a ).
thf(y,type,
y: b ).
thf(x,type,
x: b ).
thf(cTHM500C_WFF_pme,conjecture,
( ( ( z
= ( g @ x ) )
| ( z
= ( g @ y ) ) )
=> ? [Xt: b] :
( ( ( Xt = x )
| ( Xt = y ) )
& ( z
= ( g @ Xt ) ) ) ) ).
%------------------------------------------------------------------------------