TPTP Problem File: SEU877^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU877^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Finite sets)
% Problem : TPS problem from SET-TOPOLOGY-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1178 [Bro09]
% Status : Theorem
% Rating : 1.00 v6.2.0, 0.86 v6.1.0, 1.00 v6.0.0, 0.71 v5.5.0, 0.67 v5.4.0, 1.00 v4.0.0
% Syntax : Number of formulae : 4 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 13 ( 4 equ; 0 cnn)
% Maximal formula atoms : 3 ( 13 avg)
% Number of connectives : 66 ( 0 ~; 2 |; 12 &; 34 @)
% ( 0 <=>; 18 =>; 0 <=; 0 <~>)
% Maximal formula depth : 5 ( 5 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 26 ( 26 >; 0 *; 0 +; 0 <<)
% Number of symbols : 4 ( 2 usr; 1 con; 0-2 aty)
% Number of variables : 27 ( 7 ^; 17 !; 3 ?; 27 :)
% SPC : TH0_THM_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cA,type,
cA: ( a > $o ) > $o ).
thf(cB,type,
cB: ( a > $o ) > $o ).
thf(cDOMTHM3_pme,conjecture,
( ! [Xx: a > $o] :
( ( cA @ Xx )
=> ( cB @ Xx ) )
=> ( ( ^ [U: ( a > $o ) > $o] :
( ! [Xx: a > $o] :
( ( U @ Xx )
=> ( cA @ Xx ) )
& ! [Xx: a > $o] :
( ( U @ Xx )
=> ? [Xe: a > $o] :
( ! [X: ( a > $o ) > $o] :
( ( ( X
@ ^ [Xy: a] : $false )
& ! [Xx0: a > $o] :
( ( X @ Xx0 )
=> ! [Xt: a] :
( ( Xe @ Xt )
=> ( X
@ ^ [Xz: a] :
( ( Xx0 @ Xz )
| ( Xt = Xz ) ) ) ) ) )
=> ( X @ Xe ) )
& ! [Xx0: a] :
( ( Xe @ Xx0 )
=> ( Xx @ Xx0 ) )
& ! [Xy: a > $o] :
( ( ( cA @ Xy )
& ! [Xx0: a] :
( ( Xe @ Xx0 )
=> ( Xy @ Xx0 ) ) )
=> ( U @ Xy ) ) ) ) ) )
= ( ^ [U: ( a > $o ) > $o] :
? [V: ( a > $o ) > $o] :
( ! [Xx: a > $o] :
( ( V @ Xx )
=> ( cB @ Xx ) )
& ! [Xx: a > $o] :
( ( V @ Xx )
=> ? [Xe: a > $o] :
( ! [X: ( a > $o ) > $o] :
( ( ( X
@ ^ [Xy: a] : $false )
& ! [Xx0: a > $o] :
( ( X @ Xx0 )
=> ! [Xt: a] :
( ( Xe @ Xt )
=> ( X
@ ^ [Xz: a] :
( ( Xx0 @ Xz )
| ( Xt = Xz ) ) ) ) ) )
=> ( X @ Xe ) )
& ! [Xx0: a] :
( ( Xe @ Xx0 )
=> ( Xx @ Xx0 ) )
& ! [Xy: a > $o] :
( ( ( cB @ Xy )
& ! [Xx0: a] :
( ( Xe @ Xx0 )
=> ( Xy @ Xx0 ) ) )
=> ( V @ Xy ) ) ) )
& ( U
= ( ^ [Xx: a > $o] :
( ( V @ Xx )
& ( cA @ Xx ) ) ) ) ) ) ) ) ).
%------------------------------------------------------------------------------