TPTP Problem File: SEU873^5.p
View Solutions
- Solve Problem
%------------------------------------------------------------------------------
% File : SEU873^5 : TPTP v9.0.0. Released v4.0.0.
% Domain : Set Theory (Finite sets)
% Problem : TPS problem from FINITE-SET-THMS
% Version : Especial.
% English :
% Refs : [Bro09] Brown (2009), Email to Geoff Sutcliffe
% Source : [Bro09]
% Names : tps_1132 [Bro09]
% Status : Unknown
% Rating : 1.00 v4.0.0
% Syntax : Number of formulae : 4 ( 0 unt; 3 typ; 0 def)
% Number of atoms : 7 ( 3 equ; 0 cnn)
% Maximal formula atoms : 7 ( 7 avg)
% Number of connectives : 50 ( 3 ~; 4 |; 7 &; 23 @)
% ( 3 <=>; 10 =>; 0 <=; 0 <~>)
% Maximal formula depth : 15 ( 15 avg)
% Number of types : 2 ( 1 usr)
% Number of type conns : 17 ( 17 >; 0 *; 0 +; 0 <<)
% Number of symbols : 3 ( 2 usr; 0 con; 1-2 aty)
% Number of variables : 22 ( 1 ^; 18 !; 3 ?; 22 :)
% SPC : TH0_UNK_EQU_NAR
% Comments : This problem is from the TPS library. Copyright (c) 2009 The TPS
% project in the Department of Mathematical Sciences at Carnegie
% Mellon University. Distributed under the Creative Commons copyleft
% license: http://creativecommons.org/licenses/by-sa/3.0/
%------------------------------------------------------------------------------
thf(a_type,type,
a: $tType ).
thf(cC,type,
cC: a > $o ).
thf(cB,type,
cB: a > $o ).
thf(cTHM549_pme,conjecture,
( ( ! [P: ( a > $o ) > $o] :
( ( ! [E: a > $o] :
( ~ ? [Xt: a] : ( E @ Xt )
=> ( P @ E ) )
& ! [Y: a > $o,Xx: a,Z: a > $o] :
( ( ( P @ Y )
& ! [Xx_20: a] :
( ( Z @ Xx_20 )
<=> ( ( Y @ Xx_20 )
| ( Xx_20 = Xx ) ) ) )
=> ( P @ Z ) ) )
=> ( P @ cB ) )
& ! [P: ( a > $o ) > $o] :
( ( ! [E: a > $o] :
( ~ ? [Xt: a] : ( E @ Xt )
=> ( P @ E ) )
& ! [Y: a > $o,Xx: a,Z: a > $o] :
( ( ( P @ Y )
& ! [Xx_21: a] :
( ( Z @ Xx_21 )
<=> ( ( Y @ Xx_21 )
| ( Xx_21 = Xx ) ) ) )
=> ( P @ Z ) ) )
=> ( P @ cC ) ) )
=> ! [P: ( a > $o ) > $o] :
( ( ! [E: a > $o] :
( ~ ? [Xt: a] : ( E @ Xt )
=> ( P @ E ) )
& ! [Y: a > $o,Xx: a,Z: a > $o] :
( ( ( P @ Y )
& ! [Xx_22: a] :
( ( Z @ Xx_22 )
<=> ( ( Y @ Xx_22 )
| ( Xx_22 = Xx ) ) ) )
=> ( P @ Z ) ) )
=> ( P
@ ^ [Xz: a] :
( ( cB @ Xz )
| ( cC @ Xz ) ) ) ) ) ).
%------------------------------------------------------------------------------